Show simple item record

dc.contributor.authorBondarenko, Vitaliy M.*
dc.contributor.authorGildea, Joe*
dc.contributor.authorTylyshchak, Alexander*
dc.contributor.authorYurchenko, Natalia*
dc.date.accessioned2019-03-04T15:29:02Z
dc.date.available2019-03-04T15:29:02Z
dc.date.issued2019
dc.identifier.citationBondarenko, V. M., Gildea, J., Tylyshchak, A. A., & Yurchenko, N. V. (2019). On hereditary reducibility of 2-monomial matrices over commutative rings. Algebra and Discrete Mathematics, 27(1).en
dc.identifier.issn1726-3255
dc.identifier.urihttp://hdl.handle.net/10034/621942
dc.description.abstractA 2-monomial matrix over a commutative ring $R$ is by definition any matrix of the form $M(t,k,n)=\Phi\left(\begin{smallmatrix}I_k&0\\0&tI_{n-k}\end{smallmatrix}\right)$, $0<k<n$, where $t$ is a non-invertible element of $R$, $\Phi$ the compa\-nion matrix to $\lambda^n-1$ and $I_k$ the identity $k\times k$-matrix. In this paper we introduce the notion of hereditary reducibility (for these matrices) and indicate one general condition of the introduced reducibility.
dc.language.isoenen
dc.publisherTaras Shevchenko National University of Luhansken
dc.relation.urlhttp://admjournal.luguniv.edu.ua/index.php/adm/article/view/1333/pdfen
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/en
dc.subject2-monomial matrixen
dc.subjecthereditary reducible matrixen
dc.subjectcommutative ringsen
dc.titleOn hereditary reducibility of 2-monomial matrices over commutative ringsen
dc.typeArticleen
dc.identifier.eissn2415-721X
dc.contributor.departmentInstitute of Mathematic, Kyiv; University of Chester; Uzhgorod National Universityen
dc.identifier.journalAlgebra and Discrete Mathematics
dc.date.accepted2019-02-15
or.grant.openaccessYesen
rioxxterms.funderunfundeden_US
rioxxterms.identifier.projectunfundeden_US
rioxxterms.versionAMen
rioxxterms.licenseref.startdate2019-04-04
rioxxterms.publicationdate2019


Files in this item

Thumbnail
Name:
Bond-Gildead-Tylysh-2019.02.4-t ...
Size:
309.0Kb
Format:
PDF
Request:
Main article

This item appears in the following Collection(s)

Show simple item record

https://creativecommons.org/licenses/by-nc-nd/4.0/
Except where otherwise noted, this item's license is described as https://creativecommons.org/licenses/by-nc-nd/4.0/