Show simple item record

dc.contributor.authorLiu, Fang*
dc.contributor.authorLiang, Zongqi*
dc.contributor.authorYan, Yubin*
dc.date.accessioned2019-01-28T11:45:40Z
dc.date.available2019-01-28T11:45:40Z
dc.date.issued2018-12-17
dc.identifier.citationF. Liu, Z. Liang, Y. Yan, Optimal converegnce rates for semidiscrete finite element approximations of linear space-fractional partial differential equations under minimal regularity assumptions, Journal of Computational and Applied Mathematics, 352 (2019), 409-425.en
dc.identifier.doi10.1016/j.cam.2018.12.004
dc.identifier.urihttp://hdl.handle.net/10034/621824
dc.description.abstractWe consider the optimal convergence rates of the semidiscrete finite element approximations for solving linear space-fractional partial differential equations by using the regularity results for the fractional elliptic problems obtained recently by Jin et al. \cite{jinlazpasrun} and Ervin et al. \cite{ervheuroo}. The error estimates are proved by using two approaches. One approach is to apply the duality argument in Johnson \cite{joh} for the heat equation to consider the error estimates for the linear space-fractional partial differential equations. This argument allows us to obtain the optimal convergence rates under the minimal regularity assumptions for the solution. Another approach is to use the approximate solution operators of the corresponding fractional elliptic problems. This argument can be extended to consider more general linear space-fractional partial differential equations. Numerical examples are given to show that the numerical results are consistent with the theoretical results.
dc.language.isoenen
dc.publisherElsevieren
dc.relation.urlhttps://www.sciencedirect.com/science/article/pii/S0377042718307295?via%3Dihuben
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/en
dc.subjectoptimal convergenceen
dc.subjectfinite element methoden
dc.subjectspace fractional derivativeen
dc.titleOptimal convergence rates for semidiscrete finite element approximations of linear space-fractional partial differential equations under minimal regularity assumptionsen
dc.typeArticleen
dc.identifier.eissn1879-1778
dc.contributor.departmentLuliang University; Jimei University; University of Chesteren
dc.identifier.journalJournal of Computational and Applied Mathematics
dc.date.accepted2018-12-17
or.grant.openaccessYesen
rioxxterms.funderunfundeden_US
rioxxterms.identifier.projectufnundeden_US
rioxxterms.versionAMen
rioxxterms.licenseref.startdate2019-12-17
rioxxterms.publicationdate2018-12-17


Files in this item

Thumbnail
Name:
Publisher version
Thumbnail
Name:
liuyan_revision1.pdf
Size:
372.4Kb
Format:
PDF
Request:
Main article

This item appears in the following Collection(s)

Show simple item record

https://creativecommons.org/licenses/by-nc-nd/4.0/
Except where otherwise noted, this item's license is described as https://creativecommons.org/licenses/by-nc-nd/4.0/