Optimal convergence rates for semidiscrete finite element approximations of linear space-fractional partial differential equations under minimal regularity assumptions
dc.contributor.author | Liu, Fang | * |
dc.contributor.author | Liang, Zongqi | * |
dc.contributor.author | Yan, Yubin | * |
dc.date.accessioned | 2019-01-28T11:45:40Z | |
dc.date.available | 2019-01-28T11:45:40Z | |
dc.date.issued | 2018-12-17 | |
dc.identifier.citation | F. Liu, Z. Liang, Y. Yan, Optimal converegnce rates for semidiscrete finite element approximations of linear space-fractional partial differential equations under minimal regularity assumptions, Journal of Computational and Applied Mathematics, 352 (2019), 409-425. | en |
dc.identifier.doi | 10.1016/j.cam.2018.12.004 | |
dc.identifier.uri | http://hdl.handle.net/10034/621824 | |
dc.description.abstract | We consider the optimal convergence rates of the semidiscrete finite element approximations for solving linear space-fractional partial differential equations by using the regularity results for the fractional elliptic problems obtained recently by Jin et al. \cite{jinlazpasrun} and Ervin et al. \cite{ervheuroo}. The error estimates are proved by using two approaches. One approach is to apply the duality argument in Johnson \cite{joh} for the heat equation to consider the error estimates for the linear space-fractional partial differential equations. This argument allows us to obtain the optimal convergence rates under the minimal regularity assumptions for the solution. Another approach is to use the approximate solution operators of the corresponding fractional elliptic problems. This argument can be extended to consider more general linear space-fractional partial differential equations. Numerical examples are given to show that the numerical results are consistent with the theoretical results. | |
dc.language.iso | en | en |
dc.publisher | Elsevier | en |
dc.relation.url | https://www.sciencedirect.com/science/article/pii/S0377042718307295?via%3Dihub | en |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | en |
dc.subject | optimal convergence | en |
dc.subject | finite element method | en |
dc.subject | space fractional derivative | en |
dc.title | Optimal convergence rates for semidiscrete finite element approximations of linear space-fractional partial differential equations under minimal regularity assumptions | en |
dc.type | Article | en |
dc.identifier.eissn | 1879-1778 | |
dc.contributor.department | Luliang University; Jimei University; University of Chester | en |
dc.identifier.journal | Journal of Computational and Applied Mathematics | |
dc.date.accepted | 2018-12-17 | |
or.grant.openaccess | Yes | en |
rioxxterms.funder | unfunded | en_US |
rioxxterms.identifier.project | ufnunded | en_US |
rioxxterms.version | AM | en |
rioxxterms.licenseref.startdate | 2019-12-17 | |
rioxxterms.publicationdate | 2018-12-17 |