Magnetron Sputter-Coated Nanoparticle MoS2 Supported on Nanocarbon: A Highly Efficient Electrocatalyst toward the Hydrogen Evolution Reaction
dc.contributor.author | Rowley-Neale, Samuel J. | * |
dc.contributor.author | Ratova, Marina | * |
dc.contributor.author | Fugita, Lucas | * |
dc.contributor.author | Smith, Graham C. | * |
dc.contributor.author | Gaffar, Amer | * |
dc.contributor.author | Kulczyk-Malecka, Justyna | * |
dc.contributor.author | Kelly, Peter J. | * |
dc.contributor.author | Banks, Craig E. | * |
dc.date.accessioned | 2018-11-19T15:59:55Z | |
dc.date.available | 2018-11-19T15:59:55Z | |
dc.date.issued | 2018-07-03 | |
dc.identifier.citation | Rowley-Neale, S. J., Ratova, M., Fugita, L. T. N., Smith, G. C., Gaffar, A., Kulczyk-Malecka, Kelly, J., P. J. & Banks, C. E. (2018). Magnetron sputter coated nanoparticle MoS2 supported upon nanocarbon: A highly efficient electrocatalyst towards the Hydrogen Evolution Reaction, ACS Omega 3(7), 7235-7242. | en |
dc.identifier.issn | 2470-1343 | |
dc.identifier.doi | 10.1021/acsomega.8b00258 | |
dc.identifier.uri | http://hdl.handle.net/10034/621573 | |
dc.description | This document is the Accepted Manuscript version of a Published Work that appeared in final form in ACS Omega, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://pubs.acs.org/doi/10.1021/acsomega.8b00258 | en |
dc.description.abstract | The design and fabrication of inexpensive highly efficient electrocatalysts for the production of hydrogen via the hydrogen evolution reaction (HER) underpin a plethora of emerging clean energy technologies. Herein, we report the fabrication of highly efficient electrocatalysts for the HER based on magnetron-sputtered MoS2 onto a nanocarbon support, termed MoS2/C. Magnetron sputtering time is explored as a function of its physiochemical composition and HER performance; increased sputtering times give rise to materials with differing compositions, i.e., Mo4+ to Mo6+ and associated S anions (sulfide, elemental, and sulfate), and improved HER outputs. An optimized sputtering time of 45 min was used to fabricate the MoS2/C material. This gave rise to an optimal HER performance with regard to its HER onset potential, achievable current, and Tafel value, which were −0.44 (vs saturated calomel electrode (SCE)), −1.45 mV s−1, and 43 mV dec−1, respectively, which has the highest composition of Mo4+ and sulfide (MoS2). Electrochemical testing toward the HER via drop casting MoS2/C upon screen-printed electrodes (SPEs) to electrically wire the nanomaterial is found to be mass coverage dependent, where the current density increases up to a critical mass (ca. 50 μg cm−2), after which a plateau is observed. To allow for a translation of the bespoke fabricated MoS2/C from laboratory to new industrial applications, MoS2/C was incorporated into the bulk ink utilized in the fabrication of SPEs (denoted as MoS2/C-SPE), thus allowing for improved electrical wiring to the MoS2/C and resulting in the production of scalable and reproducible electrocatalytic platforms. The MoS2/C-SPEs displayed far greater HER catalysis with a 450 mV reduction in the HER onset potential and a 1.70 mA cm−2 increase in the achievable current density (recorded at −0.75 V (vs SCE)), compared to a bare/unmodified graphitic SPE. The approach of using magnetron sputtering to modify carbon with MoS2 facilitates the production of mass-producible, stable, and effective electrode materials for possible use in electrolyzers, which are cost competitive to Pt and mitigate the need to use time-consuming and low-yield exfoliation techniques typically used to fabricate pristine MoS2. | |
dc.language.iso | en | en |
dc.publisher | American Chemical Society | en |
dc.relation.url | https://pubs.acs.org/doi/10.1021/acsomega.8b00258 | en |
dc.rights | Attribution-NonCommercial-NoDerivs 3.0 United States | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | en |
dc.subject | Hydrogen evolution reaction | en |
dc.subject | Magnetron sputtering | en |
dc.subject | Nanoparticle MoS2 | en |
dc.subject | Electrocatalyst | en |
dc.subject | XPS | en |
dc.title | Magnetron Sputter-Coated Nanoparticle MoS2 Supported on Nanocarbon: A Highly Efficient Electrocatalyst toward the Hydrogen Evolution Reaction | en |
dc.type | Article | en |
dc.contributor.department | Manchester Metropolitan University; University of Chester; University of São Paula | en |
dc.identifier.journal | ACS Omega | |
or.grant.openaccess | Yes | en |
rioxxterms.funder | unfunded | en_US |
rioxxterms.identifier.project | unfunded | en_US |
rioxxterms.version | AM | en |
rioxxterms.versionofrecord | https://doi.org/10.1021/acsomega.8b00258 | |
rioxxterms.licenseref.startdate | 2018-07-03 | |
rioxxterms.publicationdate | 2018-07-03 | |
dc.dateAccepted | 2018-06-07 | |
dc.date.deposited | 2018-11-19 |