Show simple item record

dc.contributor.authorDu, Ruilian*
dc.contributor.authorYan, Yubin*
dc.contributor.authorLiang, Zongqi*
dc.date.accessioned2018-10-31T15:39:25Z
dc.date.available2018-10-31T15:39:25Z
dc.date.issued2018-10-05
dc.identifier.citationDu, R., Yan, Y. and Liang, Z., (2019). A high-order scheme to approximate the caputo fractional derivative and its application to solve the fractional diffusion wave equation, Journal of Computational Physics, 376, pp. 1312-1330en
dc.identifier.issn0021-9991
dc.identifier.doi10.1016/j.jcp.2018.10.011
dc.identifier.urihttp://hdl.handle.net/10034/621500
dc.description.abstractA new high-order finite difference scheme to approximate the Caputo fractional derivative $\frac{1}{2} \big ( \, _{0}^{C}D^{\alpha}_{t}f(t_{k})+ \, _{0}^{C}D^{\alpha}_{t}f(t_{k-1}) \big ), k=1, 2, \dots, N, $ with the convergence order $O(\Delta t^{4-\alpha}), \, \alpha\in(1,2)$ is obtained when $f^{\prime \prime \prime} (t_{0})=0$, where $\Delta t$ denotes the time step size. Based on this scheme we introduce a finite difference method for solving fractional diffusion wave equation with the convergence order $O(\Delta t^{4-\alpha} + h^2)$, where $h$ denotes the space step size. Numerical examples are given to show that the numerical results are consistent with the theoretical results.
dc.language.isoenen
dc.publisherElsevieren
dc.relation.urlhttps://www.sciencedirect.com/science/article/pii/S0021999118306685en
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/3.0/en
dc.subjectCaputo fractional derivativeen
dc.subjectfractional diffusion wave equationen
dc.subjectFinite difference methoden
dc.titleA high-order scheme to approximate the Caputo fractional derivative and its application to solve the fractional diffusion wave equationen
dc.typeArticleen
dc.contributor.departmentJimei University; University of Chesteren
dc.identifier.journalJournal of Computational Physics
dc.date.accepted2018-10-03
or.grant.openaccessYesen
rioxxterms.funderunfundeden_US
rioxxterms.identifier.projectunfundeden_US
rioxxterms.versionAMen
rioxxterms.versionofrecordhttps://doi.org/10.1016/j.jcp.2018.10.011
rioxxterms.licenseref.startdate2019-10-05
rioxxterms.publicationdate2018-10-05


Files in this item

Thumbnail
Name:
Publisher version
Thumbnail
Name:
paper_ChesterRep.pdf
Size:
411.5Kb
Format:
PDF
Request:
Main article

This item appears in the following Collection(s)

Show simple item record

https://creativecommons.org/licenses/by-nc-nd/3.0/
Except where otherwise noted, this item's license is described as https://creativecommons.org/licenses/by-nc-nd/3.0/