Recent Submissions

  • High-order schemes based on extrapolation for semilinear fractional differential equation

    Yang, Yuhui; orcid: 0000-0002-5686-5017; Green, Charles Wing Ho; Pani, Amiya K.; Yan, Yubin; email: y.yan@chester.ac.uk (Springer International Publishing, 2023-12-11)
    By rewriting the Riemann–Liouville fractional derivative as Hadamard finite-part integral and with the help of piecewise quadratic interpolation polynomial approximations, a numerical scheme is developed for approximating the Riemann–Liouville fractional derivative of order α∈(1, 2). The error has the asymptotic expansion (d3τ3-α+d4τ4-α+d5τ5-α+⋯)+(d2∗τ4+d3∗τ6+d4∗τ8+⋯) at any fixed time tN=T, N∈Z+, where di, i=3, 4, … and di∗, i=2, 3, … denote some suitable constants and τ=T/N denotes the step size. Based on this discretization, a new scheme for approximating the linear fractional differential equation of order α∈(1, 2) is derived and its error is shown to have a similar asymptotic expansion. As a consequence, a high-order scheme for approximating the linear fractional differential equation is obtained by extrapolation. Further, a high-order scheme for approximating a semilinear fractional differential equation is introduced and analyzed. Several numerical experiments are conducted to show that the numerical results are consistent with our theoretical findings.

View more