Show simple item record

dc.contributor.authorBaensch, Eberhard*
dc.contributor.authorKarakatsani, Fotini*
dc.contributor.authorMakridakis, Charalambos*
dc.date.accessioned2018-06-07T11:23:42Z
dc.date.available2018-06-07T11:23:42Z
dc.date.issued2018-05-02
dc.identifier.citationBänsch, E., Karakatsani, F., & Makridakis, C. G. (2018). A posteriori error estimates for fully discrete schemes for the time dependent Stokes problem. Calcolo, 55, 19. https://doi.org/10.1007/s10092-018-0259-2en
dc.identifier.doi10.1007/s10092-018-0259-2
dc.identifier.urihttp://hdl.handle.net/10034/621169
dc.descriptionThe final publication is available at Springer via http://dx.doi.org/10.1007/s10092-018-0259-2en
dc.description.abstractThis work is devoted to a posteriori error analysis of fully discrete finite element approximations to the time dependent Stokes system. The space discretization is based on popular stable spaces, including Crouzeix–Raviart and Taylor–Hood finite element methods. Implicit Euler is applied for the time discretization. The finite element spaces are allowed to change with time steps and the projection steps include alternatives that is hoped to cope with possible numerical artifices and the loss of the discrete incompressibility of the schemes. The final estimates are of optimal order in L∞(L2) for the velocity error.
dc.language.isoenen
dc.publisherSpringeren
dc.relation.urlhttps://link.springer.com/article/10.1007/s10092-018-0259-2en
dc.subject65M15en
dc.subject65M50en
dc.subject65N15en
dc.titleA posteriori error estimates for fully discrete schemes for the time dependent Stokes problemen
dc.typeArticleen
dc.identifier.eissn1126-5434
dc.contributor.departmentUniversity of Erlangen; University of Chester; University of Crete; Foundation for Research & Technology, Greece; University of Sussexen
dc.identifier.journalCalcolo
dc.internal.reviewer-noteChecking version of work with author 25/05/18 SMen
dc.date.accepted2018-03-12
or.grant.openaccessYesen
rioxxterms.funderUnfundeden
rioxxterms.identifier.projectUnfundeden
rioxxterms.versionAMen
rioxxterms.licenseref.startdate2019-05-02
html.description.abstractThis work is devoted to a posteriori error analysis of fully discrete finite element approximations to the time dependent Stokes system. The space discretization is based on popular stable spaces, including Crouzeix–Raviart and Taylor–Hood finite element methods. Implicit Euler is applied for the time discretization. The finite element spaces are allowed to change with time steps and the projection steps include alternatives that is hoped to cope with possible numerical artifices and the loss of the discrete incompressibility of the schemes. The final estimates are of optimal order in L∞(L2) for the velocity error.
rioxxterms.publicationdate2018-05-02


Files in this item

Thumbnail
Name:
BKM_bestokes(4).pdf
Size:
1.071Mb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record