A posteriori error estimates for fully discrete schemes for the time dependent Stokes problem
Affiliation
University of Erlangen; University of Chester; University of Crete; Foundation for Research & Technology, Greece; University of SussexPublication Date
2018-05-02
Metadata
Show full item recordAbstract
This work is devoted to a posteriori error analysis of fully discrete finite element approximations to the time dependent Stokes system. The space discretization is based on popular stable spaces, including Crouzeix–Raviart and Taylor–Hood finite element methods. Implicit Euler is applied for the time discretization. The finite element spaces are allowed to change with time steps and the projection steps include alternatives that is hoped to cope with possible numerical artifices and the loss of the discrete incompressibility of the schemes. The final estimates are of optimal order in L∞(L2) for the velocity error.Citation
Bänsch, E., Karakatsani, F., & Makridakis, C. G. (2018). A posteriori error estimates for fully discrete schemes for the time dependent Stokes problem. Calcolo, 55, 19. https://doi.org/10.1007/s10092-018-0259-2Publisher
SpringerJournal
CalcoloAdditional Links
https://link.springer.com/article/10.1007/s10092-018-0259-2Type
ArticleLanguage
enDescription
The final publication is available at Springer via http://dx.doi.org/10.1007/s10092-018-0259-2EISSN
1126-5434ae974a485f413a2113503eed53cd6c53
10.1007/s10092-018-0259-2