Show simple item record

dc.contributor.authorShi, Yu*
dc.contributor.authorSoutis, Constantinos*
dc.date.accessioned2018-05-25T09:17:57Z
dc.date.available2018-05-25T09:17:57Z
dc.date.issued2012-12-01
dc.identifier.citationShi, Y., & Soutis, C. (2012). A finite element analysis of impact damage in composite laminates. The Aeronautical Journal, 116 (1186), 1331-47. https://doi.org/10.1017/S0001924000007661en
dc.identifier.issn2059-6464
dc.identifier.doi10.1017/S0001924000007661
dc.identifier.urihttp://hdl.handle.net/10034/621147
dc.description.abstractIn this work, stress-based and fracture mechanics criteria were developed to predict initiation and evolution, respectively, of intra- and inter-laminar cracking developed in composite laminates subjected to low velocity impact. The Soutis shear stress-strain semi-empirical model was used to describe the nonlinear shear behaviour of the composite. The damage model was implemented in the finite element (FE) code (Abaqus/Explicit) by a user-defined material subroutine (VUMAT). Delamination (or inter-laminar cracking) was modelled using interface cohesive elements and the splitting and transverse matrix cracks that appeared within individual plies were also simulated by inserting cohesive elements between neighbouring elements parallel to the fibre direction in each single layer. A good agreement was obtained when compared the numerically predicted results to experimentally obtained curves of impact force and absorbed energy versus time. A non-destructive technique (NDT), penetrant enhanced X-ray radiography, was used to observe the various damage mechanisms induced by impact. It has been shown that the proposed damage model can successfully capture the internal damage pattern and the extent to which it was developed in these carbon fibre/epoxy composite laminates.
dc.language.isoenen
dc.publisherCambridge University Pressen
dc.relation.urlhttps://www.cambridge.org/core/journals/aeronautical-journal/article/finite-element-analysis-of-impact-damage-in-composite-laminates/1C553EDE76E767B0B75E4B82933AA430en
dc.subjectCompositeen
dc.subjectVUMATen
dc.subjectFinite element analysis (FEA)en
dc.subjectNDTen
dc.titleA finite element analysis of impact damage in composite laminatesen
dc.typeArticleen
dc.contributor.departmentUniversity of Chester; University of Manchesteren
dc.identifier.journalThe Aeronautical Journal
dc.internal.reviewer-notePlease submit without full text. Authorised by author SMen
dc.date.accepted2012-09-27
or.grant.openaccessYesen
rioxxterms.funderUnfundeden
rioxxterms.identifier.projectUnfundeden
rioxxterms.versionAMen
html.description.abstractIn this work, stress-based and fracture mechanics criteria were developed to predict initiation and evolution, respectively, of intra- and inter-laminar cracking developed in composite laminates subjected to low velocity impact. The Soutis shear stress-strain semi-empirical model was used to describe the nonlinear shear behaviour of the composite. The damage model was implemented in the finite element (FE) code (Abaqus/Explicit) by a user-defined material subroutine (VUMAT). Delamination (or inter-laminar cracking) was modelled using interface cohesive elements and the splitting and transverse matrix cracks that appeared within individual plies were also simulated by inserting cohesive elements between neighbouring elements parallel to the fibre direction in each single layer. A good agreement was obtained when compared the numerically predicted results to experimentally obtained curves of impact force and absorbed energy versus time. A non-destructive technique (NDT), penetrant enhanced X-ray radiography, was used to observe the various damage mechanisms induced by impact. It has been shown that the proposed damage model can successfully capture the internal damage pattern and the extent to which it was developed in these carbon fibre/epoxy composite laminates.


This item appears in the following Collection(s)

Show simple item record