Show simple item record

dc.contributor.authorYan, Yubin*
dc.contributor.authorKhan, Monzorul*
dc.contributor.authorFord, Neville J.*
dc.date.accessioned2017-09-29T09:58:31Z
dc.date.available2017-09-29T09:58:31Z
dc.date.issued2018-01-11
dc.identifier.citationYan, Y. , Khan, M., & Ford, N. J. (2018). An analysis of the modified L1 scheme for time-fractional partial differential equations with nonsmooth data. SIAM Journal on Numerical Analysis (SINUM), 56(1), 210-227. https://doi.org/10.1137/16M1094257en
dc.identifier.issn0036-1429
dc.identifier.doi10.1137/16M1094257
dc.identifier.urihttp://hdl.handle.net/10034/620639
dc.descriptionFirst Published in SIAM Journal on Numerical Analysis (SINUM), 56(1), 2018, published by the Society of Industrial and Applied Mathematics (SIAM). Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
dc.description.abstractWe introduce a modified L1 scheme for solving time fractional partial differential equations and obtain error estimates for smooth and nonsmooth initial data in both homogeneous and inhomogeneous cases. Jin \et (2016, An analysis of the L1 scheme for the subdiffusion equation with nonsmooth data, IMA J. of Numer. Anal., 36, 197-221) established an $O(k)$ convergence rate for the L1 scheme for smooth and nonsmooth initial data for the homogeneous problem, where $k$ denotes the time step size. We show that the modified L1 scheme has convergence rate $O(k^{2-\alpha}), 0< \alpha <1$ for smooth and nonsmooth initial data in both homogeneous and inhomogeneous cases. Numerical examples are given to show that the numerical results are consistent with the theoretical results.
dc.language.isoenen
dc.publisherSociety for Industrial and Applied Mathematicsen
dc.relation.urlhttp://epubs.siam.org/doi/abs/10.1137/16M1094257en
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/en
dc.subjectTime fractional partial differential equationsen
dc.subjectCaputo fractional derivativeen
dc.subjectError estimatesen
dc.subjectLaplace transformen
dc.titleAn analysis of the modified L1 scheme for time-fractional partial differential equations with nonsmooth dataen
dc.typeArticleen
dc.identifier.eissn1095-7170
dc.contributor.departmentUniversity of Chesteren
dc.identifier.journalSIAM Journal on Numerical Analysis (SINUM)
dc.date.accepted2017-09-20
or.grant.openaccessYesen
rioxxterms.funderUnfundeden
rioxxterms.identifier.projectUnfundeden
rioxxterms.versionAMen
rioxxterms.versionofrecordhttps://doi.org/10.1137/16M1094257
rioxxterms.licenseref.startdate2018-01-11
html.description.abstractWe introduce a modified L1 scheme for solving time fractional partial differential equations and obtain error estimates for smooth and nonsmooth initial data in both homogeneous and inhomogeneous cases. Jin \et (2016, An analysis of the L1 scheme for the subdiffusion equation with nonsmooth data, IMA J. of Numer. Anal., 36, 197-221) established an $O(k)$ convergence rate for the L1 scheme for smooth and nonsmooth initial data for the homogeneous problem, where $k$ denotes the time step size. We show that the modified L1 scheme has convergence rate $O(k^{2-\alpha}), 0< \alpha <1$ for smooth and nonsmooth initial data in both homogeneous and inhomogeneous cases. Numerical examples are given to show that the numerical results are consistent with the theoretical results.
rioxxterms.publicationdate2018-01-11


Files in this item

Thumbnail
Name:
yankhanford_2017_09_03.pdf
Size:
217.4Kb
Format:
PDF
Request:
Main article

This item appears in the following Collection(s)

Show simple item record

http://creativecommons.org/licenses/by-nc/4.0/
Except where otherwise noted, this item's license is described as http://creativecommons.org/licenses/by-nc/4.0/