Experimental and theoretical study of a piezoelectric vibration energy harvester under high temperature
Affiliation
University of Cambridge; University of ChesterPublication Date
2017-08-01
Metadata
Show full item recordAbstract
This paper focuses on studying the effect of increasing the ambient temperature up to 160 °C on the power harvested by an MEMS piezoelectric micro-cantilever manufactured using an aluminum nitride-on-silicon fabrication process. An experimental study shows that the peak output power decreases by 60% to 70% depending on the input acceleration. A theoretical study establishes the relationship of all important parameters with temperature and includes them into a temperature-dependent model. This model shows that around 50% of the power drop can be explained by a decreasing quality factor, and that thermal stresses account for around 30% of this decrease.Citation
Arroyo, E., Jia, Y., Du, S., Chen, S.T, & Seshia, A.A. (2017). Experimental and theoretical study of a piezoelectric vibration energy harvester under high temperature, Journal of Microelectromechanical SystemsPublisher
IEEEAdditional Links
http://ieeexplore.ieee.org/document/7999189/Type
ArticleLanguage
enDescription
“© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.”ae974a485f413a2113503eed53cd6c53
10.1109/JMEMS.2017.2723626
Scopus Count
Collections
The following license files are associated with this item:
- Creative Commons
Except where otherwise noted, this item's license is described as http://creativecommons.org/licenses/by-nc-nd/4.0/