A New Electrode Design Method in Piezoelectric Vibration Energy Harvesters to Maximize Output Power
Name:
Publisher version
View Source
Access full-text PDFOpen Access
View Source
Check access options
Check access options
Affiliation
University of Cambridge; University of ChesterPublication Date
2017-07-19
Metadata
Show full item recordAbstract
A resonant vibration energy harvester typically comprises of a clamped anchor and a vibrating shuttle with a proof mass. Piezoelectric materials are embedded in locations of high strain in order to transduce mechanical deformation into electrical charge. Conventional design for piezoelectric vibration energy harvesters (PVEH) usually utilizes piezoelectric materials and metal electrode layers covering the entire surface area of the cantilever with no consideration provided to examine the trade-off involved with respect to maximize output power. This paper reports on the theory and experimental verification underpinning optimization of the active electrode area in order to maximize output power. The calculations show that, in order to maximize the output power of a PVEH, the electrode should cover the piezoelectric layer from the peak strain area to a position, where the strain is a half of the average strain in all the previously covered area. With the proposed electrode design, the output power can be improved by 145% and 126% for a cantilever and a clamped-clamped beam, respectively. MEMS piezoelectric harvesters are fabricated to experimentally validate the theory.Citation
Du, S., Jia, Y., Chen, S.T., Zhao, C., Sun, B., Arroyo, E., & Seshia, A.A. (2017). A New Electrode Design Method in Piezoelectric Vibration Energy Harvesters to Maximize Output Power. Sensors and Actuators A: Physical, 263(15), 693-701Publisher
ElsevierAdditional Links
https://doi.org/10.1016/j.sna.2017.06.026Type
ArticleLanguage
enISSN
0924-4247ae974a485f413a2113503eed53cd6c53
10.1016/j.sna.2017.06.026
Scopus Count
Collections
The following license files are associated with this item:
- Creative Commons
Except where otherwise noted, this item's license is described as http://creativecommons.org/licenses/by-nc-nd/4.0/