Show simple item record

dc.contributor.authorAntonopoulou, Dimitra*
dc.contributor.authorBloemker, Dirk*
dc.contributor.authorKarali, Georgia D.*
dc.date.accessioned2016-11-15T11:12:42Z
dc.date.available2016-11-15T11:12:42Z
dc.date.issued2018-02-19
dc.identifier.citationAntonopoulou, D., Bloemker, D. & Karali, G. (2018). The sharp interface limit for the stochastic Cahn-Hilliard Equation. Annales de l'Institut Henri Poincaré Probabilités et Statistiques, 54(1), 280-298. http://doi.org/10.1214/16-AIHP804en
dc.identifier.issn0246-0203
dc.identifier.doi10.1214/16-AIHP804
dc.identifier.urihttp://hdl.handle.net/10034/620253
dc.description.abstractWe study the two and three dimensional stochastic Cahn-Hilliard equation in the sharp interface limit, where the positive parameter \eps tends to zero, which measures the width of transition layers generated during phase separation. We also couple the noise strength to this parameter. Using formal asymptotic expansions, we identify the limit. In the right scaling we indicate that the solutions of stochastic Cahn-Hilliard converge to a solution of a Hele-Shaw problem with stochastic forcing. In the case when the noise is sufficiently small, we rigorously prove that the limit is a deterministic Hele-Shaw problem. Finally, we discuss which estimates are necessary in order to extend the rigorous result to larger noise strength.
dc.language.isoenen
dc.publisherIMS Journalsen
dc.relation.urlhttps://projecteuclid.org/euclid.aihp/1519030829en
dc.subjectSPDEsen
dc.titleThe sharp interface limit for the stochastic Cahn-Hilliard Equationen
dc.typeArticleen
dc.contributor.departmentUniversiy of Chesteren
dc.identifier.journalAnnales de l'Institut Henri Poincaré Probabilités et Statistiques
dc.date.accepted2016-10-26
or.grant.openaccessYesen
rioxxterms.funderunfundeden
rioxxterms.identifier.projectunfundeden
rioxxterms.versionAMen
rioxxterms.licenseref.startdate2018-02-19
html.description.abstractWe study the two and three dimensional stochastic Cahn-Hilliard equation in the sharp interface limit, where the positive parameter \eps tends to zero, which measures the width of transition layers generated during phase separation. We also couple the noise strength to this parameter. Using formal asymptotic expansions, we identify the limit. In the right scaling we indicate that the solutions of stochastic Cahn-Hilliard converge to a solution of a Hele-Shaw problem with stochastic forcing. In the case when the noise is sufficiently small, we rigorously prove that the limit is a deterministic Hele-Shaw problem. Finally, we discuss which estimates are necessary in order to extend the rigorous result to larger noise strength.
rioxxterms.publicationdate2018-02-19


Files in this item

Thumbnail
Name:
ABKlim20160919fin.pdf
Size:
413.9Kb
Format:
PDF
Request:
Main article

This item appears in the following Collection(s)

Show simple item record