A mathematical model of microbial folate biosynthesis and utilisation: implications for antifolate development
Name:
Salcedo-SoraAndMcAuley2016.doc
Size:
116.5Kb
Format:
Microsoft Word
Request:
Word document
Affiliation
Liverpool Hope University, University of ChesterPublication Date
2016-01-15
Metadata
Show full item recordAbstract
The metabolic biochemistry of folate biosynthesis and utilisation has evolved into a complex network of reactions. Although this complexity represents challenges to the field of folate research it has also provided a renewed source for antimetabolite targets. A range of improved folate chemotherapy continues to be developed and applied particularly to cancer and chronic inflammatory diseases. However, new or better antifolates against infectious diseases remain much more elusive. In this paper we describe the assembly of a generic deterministic mathematical model of microbial folate metabolism. Our aim is to explore how a mathematical model could be used to explore the dynamics of this inherently complex set of biochemical reactions. Using the model it was found that: (1) a particular small set of folate intermediates are overrepresented, (2) inhibitory profiles can be quantified by the level of key folate products, (3) using the model to scan for the most effective combinatorial inhibitions of folate enzymes we identified specific targets which could complement current antifolates, and (4) the model substantiates the case for a substrate cycle in the folinic acid biosynthesis reaction. Our model is coded in the systems biology markup language and has been deposited in the BioModels Database (MODEL1511020000), this makes it accessible to the community as a whole.Citation
Enrique Salcedo-Sora, J., & Mc Auley, M. T. (2016). A mathematical model of microbial folate biosynthesis and utilisation: implications for antifolate development. Molecular BioSystems, 12(3), 923-933. doi: 10.1039/C5MB00801HPublisher
Royal Society of ChemistryJournal
Molecular BiosystemsType
ArticleLanguage
enISSN
1742-206XEISSN
1742-2051ae974a485f413a2113503eed53cd6c53
10.1039/C5MB00801H
Scopus Count
Collections
The following license files are associated with this item:
- Creative Commons
Except where otherwise noted, this item's license is described as http://creativecommons.org/licenses/by/4.0/