Show simple item record

dc.contributor.authorGildea, Joe*
dc.date.accessioned2016-01-08T09:38:37Z
dc.date.available2016-01-08T09:38:37Z
dc.date.issued2015-12-28
dc.identifier.citationGildea, J. (2016). Torsion units for a Ree group, Tits group and a Steinberg triality group. Rendiconti del Circolo Matematico di Palermo, 65(1), 139-157. http://dx.doi.org/10.1007/s12215-015-0225-7en
dc.identifier.doi10.1007/s12215-015-0225-7
dc.identifier.urihttp://hdl.handle.net/10034/593071
dc.description.abstractWe investigate the Zassenhaus conjecture for the Steinberg triality group ${}^3D_4(2^3)$, Tits group ${}^2F_4(2)'$ and the Ree group ${}^2F_4(2)$. Consequently, we prove that the Prime Graph question is true for all three groups.
dc.language.isoenen
dc.publisherSpringeren
dc.relation.urlhttps://link.springer.com/article/10.1007%2Fs12215-015-0225-7en
dc.subjectZassenhaus Conjectureen
dc.subjectPrime Graph Questionen
dc.titleTorsion Units for for a Ree group, Tits group and a Steinberg triality groupen
dc.typeArticleen
dc.contributor.departmentUniversity of Chesteren
dc.identifier.journalRendiconti del Circolo Matematico di Palermo
refterms.dateFOA2018-08-13T12:19:43Z
html.description.abstractWe investigate the Zassenhaus conjecture for the Steinberg triality group ${}^3D_4(2^3)$, Tits group ${}^2F_4(2)'$ and the Ree group ${}^2F_4(2)$. Consequently, we prove that the Prime Graph question is true for all three groups.


Files in this item

Thumbnail
Name:
TS.pdf
Size:
312.7Kb
Format:
PDF
Description:
Main article

This item appears in the following Collection(s)

Show simple item record