A Dufort-Frankel Difference Scheme for Two-Dimensional Sine-Gordon Equation
dc.contributor.author | Liang, Zongqi | * |
dc.contributor.author | Yan, Yubin | * |
dc.contributor.author | Cai, Guorong | * |
dc.date.accessioned | 2015-10-07T14:11:51Z | |
dc.date.available | 2015-10-07T14:11:51Z | |
dc.date.issued | 2014-10-29 | |
dc.identifier.citation | Liang, Z., Yan, Y., & Cai, G. (2014). A Dufort-Frankel Difference Scheme for Two-Dimensional Sine-Gordon Equation. Discrete Dynamics in Nature and Society, 2014, 22. doi: 10.1155/2014/784387 | en |
dc.identifier.issn | 1026-0226 | en |
dc.identifier.issn | 1607-887X | en |
dc.identifier.doi | 10.1155/2014/784387 | |
dc.identifier.uri | http://hdl.handle.net/10034/579442 | |
dc.description.abstract | A standard Crank-Nicolson finite-difference scheme and a Dufort-Frankel finite-difference scheme are introduced to solve two-dimensional damped and undamped sine-Gordon equations. The stability and convergence of the numerical methods are considered. To avoid solving the nonlinear system, the predictor-corrector techniques are applied in the numerical methods. Numerical examples are given to show that the numerical results are consistent with the theoretical results. | |
dc.language.iso | en | en |
dc.publisher | Hindawi | en |
dc.relation.url | http://www.hindawi.com/journals/ddns/2014/784387/ | en |
dc.rights | Archived with thanks to Discrete Dynamics in Nature and Society | en |
dc.rights | An error occurred on the license name. | * |
dc.rights.uri | An error occurred getting the license - uri. | * |
dc.subject | finite difference method | en |
dc.subject | SIne-Gordon equation | en |
dc.subject | Dufort-Frankel difference scheme | en |
dc.title | A Dufort-Frankel Difference Scheme for Two-Dimensional Sine-Gordon Equation | en |
dc.type | Article | en |
dc.contributor.department | University of Chester | en |
dc.identifier.journal | Discrete Dynamics in Nature and Society | |
dc.date.accepted | 2014-07-24 | |
html.description.abstract | A standard Crank-Nicolson finite-difference scheme and a Dufort-Frankel finite-difference scheme are introduced to solve two-dimensional damped and undamped sine-Gordon equations. The stability and convergence of the numerical methods are considered. To avoid solving the nonlinear system, the predictor-corrector techniques are applied in the numerical methods. Numerical examples are given to show that the numerical results are consistent with the theoretical results. | |
rioxxterms.publicationdate | 2014-10-29 |