• Lamin A/C dysregulation contributes to cardiac pathology in a mouse model of severe spinal muscular atrophy

      Soltic, Darija; Shorrock, Hannah K; Allardyce, Hazel; Wilson, Emma L; Holt, Ian; Synowsky, Silvia A; Shirran, Sally L; Parson, Simon H; Gillingwater, Thomas H; Fuller, HR; et al.
      Cardiac pathology is emerging as a prominent systemic feature of spinal muscular atrophy (SMA), but little is known about the underlying molecular pathways. Using quantitative proteomics analysis, we demonstrate widespread molecular defects in heart tissue from the Taiwanese mouse model of severe SMA. We identify increased levels of lamin A/C as a robust molecular phenotype in the heart of SMA mice and show that lamin A/C dysregulation is also apparent in SMA patient fibroblast cells and other tissues from SMA mice. Lamin A/C expression was regulated in vitro by knockdown of the E1 ubiquitination factor ubiquitin-like modifier activating enzyme 1, a key downstream mediator of SMN-dependent disease pathways, converging on β-catenin signaling. Increased levels of lamin A are known to increase the rigidity of nuclei, inevitably disrupting contractile activity in cardiomyocytes. The increased lamin A/C levels in the hearts of SMA mice therefore provide a likely mechanism explaining morphological and functional cardiac defects, leading to blood pooling. Therapeutic strategies directed at lamin A/C may therefore offer a new approach to target cardiac pathology in SMA.
    • The long non-coding RNA NEAT1 regulates cell survival in breast cancer cell lines

      Almnaseer, Zainab; Pickard, Mark R.; Mourtada-Maarabouni, Mirna; Keele University, United Kingdom (NCRI Cancer Conference 2015 Abstracts, 2015)
      Background Nuclear long non-coding RNAs (LncRNAs) regulate various cellular processes including the organization of nuclear sub-structures, the alteration of chromatin state, and the regulation of gene expression. Nuclear Enriched Abundant Transcript 1 (NEAT1) is a nuclear lncRNA transcribed from chromosome 11q13. Two transcripts are produced from the NEAT1 gene, 3.7-kb NEAT1_v1 and 23-kb NEAT1_v2. Both isoforms participate in the formation of the nuclear paraspeckles . NEAT1 is reported to be overexpressed in prostate cancer and a direct transcriptional target of hypoxia-inducible factor in many breast cancer cell lines. The aims of this study were to determine the effects of silencing NEAT1 on breast cancer cell survival. Method MCF7 and MDA-MB 231 cells were transfected with siRNAs to different NEAT1 sequences or NEAT1 antisense oligonucleotides (ASO). Controls received scrambled siRNA or scrambled oligonucleotide, as appropriate. In some experiments, cells were exposed to ultraviolet-C (UV-C) light post-transfection to induce apoptosis, and then culture viability and apoptosis were assessed. NEAT1 expression was evaluated by qRT-PCR TaqMan® analysis. Results In MCF7 and MDA-MB-231 cells, siRNA-mediated silencing of NEAT1 reduced basal survival and after UV-C irradiation and decreased their colony forming ability. NEAT1 ASOs were more effective in silencing NEAT1 and caused a greater reduction in cell viability. NEAT1 silencing also affected cell cycle profile by enhancing the proportion of cells in G0/G1 phase. Conclusion NEAT1 regulates the survival of Breast cells. Down regulation of NEAT1 expression decreased cell survival, proliferation and modulated cell cycle progression of breast cancer cells, indicating a link between the NEAT1 expression levels and carcinogenesis of breast cancer.
    • Long non-coding RNAs: new opportunities and old challenges in cancer therapy

      Williams, Gwyn T.; Pickard, Mark R.; Keele University; University of Chester (AME Publishing Company, 2016-09)
      No abstract - invited commentary
    • Long-term administration of the mitochondria-targeted antioxidant mitoquinone mesylate fails to attenuate age-related oxidative damage or rescue the loss of muscle mass and function associated with aging of skeletal muscle

      Nye, Gareth; Sakellariou, Giorgos; Lightfoot, Adam; Pearson, Timothy; Wells, Nicola; McArdle, Anne; Jackson, Malcolm; Giakoumaki, Ifigeneia; Griffiths, Richard; University of Liverpool (Faseb Journal, 2016-08-22)
      Age-related skeletal muscle dysfunction is the underlying cause of morbidity that affects up to half the population aged 80 and over. Considerable evidence indicates that oxidative damage and mitochondrial dysfunction contribute to the sarcopenic phenotype that occurs with aging. To examine this, we administered the mitochondria-targeted antioxidant mitoquinone mesylate {[10-(4,5-dimethoxy-2-methyl-3,6-dioxo-1,4-cyclohexadien-1-yl)decyl] triphenylphosphonium; 100 μM} to wild-type C57BL/6 mice for 15 wk (from 24 to 28 mo of age) and investigated the effects on age-related loss of muscle mass and function, changes in redox homeostasis, and mitochondrial organelle integrity and function. We found that mitoquinone mesylate treatment failed to prevent age-dependent loss of skeletal muscle mass associated with myofiber atrophy or alter a variety of in situ and ex vivo muscle function analyses, including maximum isometric tetanic force, decline in force after a tetanic fatiguing protocol, and single-fiber-specific force. We also found evidence that long-term mitoquinone mesylate administration did not reduce mitochondrial reactive oxygen species or induce significant changes in muscle redox homeostasis, as assessed by changes in 4-hydroxynonenal protein adducts, protein carbonyl content, protein nitration, and DNA damage determined by the content of 8-hydroxydeoxyguanosine. Mitochondrial membrane potential, abundance, and respiration assessed in permeabilized myofibers were not significantly altered in response to mitoquinone mesylate treatment. Collectively, these findings demonstrate that long-term mitochondria-targeted mitoquinone mesylate administration failed to attenuate age-related oxidative damage in skeletal muscle of old mice or provide any protective effect in the context of muscle aging
    • Low leukotriene B4 receptor 1 leads to ALOX5 downregulation at diagnosis of chronic myeloid leukemia

      Lucas, Claire; Harris, Robert; McDonald, Elizabeth; Giannoudis, Athina; Clark, Richard; University of Liverpool, Royal Liverpool University hospital, (Ferrata Storti Foundation, 2014-11-01)
      ALOX5 is implicated in chronic myeloid leukemia development in mouse leukemic stem cells, but its importance in human chronic myeloid leukemia is unknown. Functional ALOX5 was assessed using an LTB4 ELISA and ALOX5, and LTB4R1 mRNA expression was determined via a TaqMan gene expression assay. LTB4R1 and 5-LOX protein levels were assessed by cell surface flow cytometry analysis. At diagnosis ALOX5 was below normal in both blood and CD34(+) stem cells in all patients. On treatment initiation, ALOX5 levels increased in all patients except those who were destined to progress subsequently to blast crisis. LTB4 levels were increased despite low ALOX5 expression, suggesting that the arachidonic acid pathway is functioning normally up to the point of LTB4 production. However, the LTB4 receptor (BLT1) protein in newly diagnosed patients was significantly lower than after a period of treatment (P<0.0001). The low level of LTB4R1 at diagnosis explains the downregulation of ALOX5. In the absence of LTB4R1, the arachidonic acid pathway intermediates (5-HEPTE and LTA4) negatively regulate ALOX5. ALOX5 regulation is aberrant in chronic myeloid leukemia patients and may not be important for the development of the disease. Our data suggest caution when extrapolating mouse model data into human chronic myeloid leukemia.
    • Magnetic nanoparticle-mediated gene delivery to two- and three-dimensional neural stem cell cultures: magnet-assisted transfection and multifection approaches to enhance outcomes

      Pickard, Mark R.; Adams, Christopher F.; Chari, Divya M.; University of Chester; Keele University (Wiley, 2017-02-02)
      Neural stem cells (NSCs) have high translational potential in transplantation therapies for neural repair. Enhancement of their therapeutic capacity by genetic engineering is an important goal for regenerative neurology. Magnetic nanoparticles (MNPs) are major non-viral vectors for safe bioengineering of NSCs, offering critical translational benefits over viral vectors, including safety, scalability, and ease of use. This unit describes protocols for the production of suspension (neurosphere) and adherent (monolayer) murine NSC cultures. Genetic engineering of NSCs with MNPs and the application of 'magnetofection' (magnetic fields) or 'multifection' (repeat transfection) approaches to enhance gene delivery are described. Magnetofection of monolayer cultures achieves optimal transfection, but neurospheres offer key advantages for neural graft survival post-transplantation. A protocol is presented which allows the advantageous features of each approach to be combined into a single procedure for transplantation. The adaptation of these protocols for other MNP preparations is considered, with emphasis on the evaluation of procedural safety.
    • Mechanisms of skeletal muscle ageing: avenues for therapeutic intervention

      Nye, Gareth; McCormick, Rachel; Lightfoot, Adam; McArdle, Anne; University of Liverpool (Elsevier, 2014-05-28)
      Age-related loss of muscle mass and function, termed sarcopenia, is a catastrophic process, which impacts severely on quality of life of older people. The mechanisms underlying sarcopenia are unclear and the development of optimal therapeutic interventions remains elusive. Impaired regenerative capacity, attenuated ability to respond to stress, elevated reactive oxygen species production and low-grade systemic inflammation are all key contributors to sarcopenia. Pharmacological intervention using compounds such as 17AAG, SS-31 and Bimagrumab or naturally occurring polyphenols to target specific pathways show potential benefit to combat sarcopenia although further research is required, particularly to identify the mechanisms by which muscle fibres are completely lost with increasing age.
    • Mental Health Decisions; what every officer should consider

      Williams, Barry; Jones, Steven; University of Chester (Police Professional, 2012-05-24)
      It can often appear to Police officers that they are damned if they do make decisions, and damned if they don’t in mental health cases. A culture has evolved that triggers decision apathy and defensive decisions that arguably do not benefit the Police, public, or the mental health arrestee. Decisions of this presenting complexity in whatever profession must be made and firmly rooted within the current evidence base, lawful, and also be reasonable in the given situation. It is therefore not unreasonable to expect officers to explain and account for how and why they acted as they did, and the frameworks (statutes/ codes) which should underpin such practice decisions. It is of paramount importance that Police officers are kept appraised of developments in mental health cases and how this crucially will inform, and sometimes correct custom and practice. This article in three parts aims firstly to refresh officer’s knowledge. Second, inform current practice and address practice from recent cases involving the police and mental health patients. Thirdly, and perhaps the most crucial through case examples offer a decision making framework to support operational staff in the right direction for mental health practice and defend practice challenges that may arise at all levels.
    • Methadone‐Assisted Opiate Withdrawal and Subsequent Heroin Abstinence: The Importance of Psychological Preparedness

      Jones, Steven; Jack, Barbara; Kirby, Julie; Wilson, Thomas; Murphy, Philip; University of Chester
      Background and Objectives: Treatment guidelines emphasize patients’ readiness for transitioning from opiate substitution treatment (OST) to opiate withdrawal and abstinence. Psychological preparedness indicators for this transition were examined. Methods: Patients (all male) were recruited from three treatment settings: prison, an inpatient detoxification unit, and an outpatient clinic. Time 1 (T1) was admission to methadone‐assisted withdrawal in all settings. Time 2 (T2) was a 6‐month follow‐up. With n = 24 at T1 for each group (N = 72), a battery of instruments relevant to psychological preparedness was administered. Results: At T1, inpatients had higher self‐efficacy beliefs for successful treatment completion than prison patients. For patients contactable at T2, T1 self‐efficacy positively predicted T2 opiate abstinence. No other variable improved prediction. T1 SOCRATES (Stages of Change Readiness and Treatment Eagerness Scale) ambivalence scores, age, and lifetime heroin use duration predicted maintenance of contact or not with treatment services and contactability by the researcher. Measures of mood did not differ between groups at T1 or predict T2 outcomes. Discussion and Conclusions: Self‐efficacy beliefs are a potentially useful indicator of readiness for transitioning from OST to a medically assisted opiate withdrawal and subsequent abstinence. Ambivalence regarding change, age, and lifetime heroin use duration are potentially useful predictors of patients maintaining contact with services, and of being retained in research. Scientific Significance: These findings advance existing literature and knowledge by highlighting the importance of self‐efficacy in psychological preparedness for opiate abstinence, and the predictive utility to clinicians of this and other variables measurable at admission, in the clinical management of opiate users
    • Mitochondrial ROS regulate oxidative damage and mitophagy but not age-related muscle fiber atrophy

      Nye, Gareth; Sakellariou, Giorgos; Pearson, Timothy; Lightfoot, Adam; Wells, Nicola; Giakoumaki, Ifigeneia; Vasilaki, Aphrodite; Griffiths, Richard; Jackson, Malcolm; McArdle, Anne; et al. (Nature Research, 2016-09-29)
      Age-related loss of skeletal muscle mass and function is a major contributor to morbidity and has a profound effect on the quality of life of older people. The potential role of age-dependent mitochondrial dysfunction and cumulative oxidative stress as the underlying cause of muscle aging remains a controversial topic. Here we show that the pharmacological attenuation of age-related mitochondrial redox changes in muscle with SS31 is associated with some improvements in oxidative damage and mitophagy in muscles of old mice. However, this treatment failed to rescue the age-related muscle fiber atrophy associated with muscle atrophy and weakness. Collectively, these data imply that the muscle mitochondrial redox environment is not a key regulator of muscle fiber atrophy during sarcopenia but may play a key role in the decline of mitochondrial organelle integrity that occurs with muscle aging.
    • Molecular and Cellular Mechanisms of Action of Tumour Suppressor GAS5 LncRNA

      Pickard, Mark R.; Williams, Gwyn T.; Keele University (MDPI, 2015-07-07)
      It is increasingly recognised that lncRNAs play essential regulatory roles in fundamental biological processes and, consequently, that their dysregulation may contribute to major human diseases, including cancer. Better understanding of lncRNA biology may therefore offer new insights into pathogenetic mechanisms and thereby offer novel opportunities for diagnosis and therapy. Of particular interest in this regard is GAS5 lncRNA, which is down-regulated in multiple cancers, with expression levels related to both clinico-pathological characteristics and patient prognosis. Functional studies have further shown that GAS5 lncRNA both inhibits the proliferation and promotes the apoptosis of multiple cell types, and that together these cellular mechanisms of action are likely to form the basis of its tumour suppressor action. At the same time, advances have been made in our understanding of the molecular mechanisms of GAS5 lncRNA action in recent years, including riborepression of certain steroid hormone receptors and sequestration of miR-21, impacting key regulatory pathways of cell survival. Overall this accumulating knowledge has the potential to improve both the diagnosis and treatment of cancer, and ultimately patient outcome.
    • Muscling in on mitochondrial sexual dimorphism; role of mitochondrial dimorphism in skeletal muscle health and disease

      Nye, Gareth; Lightfoot, Adam; Sakellariou, Giorgos; Degans, Hans; University of Manchester, Manchester Metropolitan University (Portland Press, 2017-07-07)
      Mitochondria are no longer solely regarded as the cellular powerhouse; instead, they are now implicated in mediating a wide-range of cellular processes, in the context of health and disease. A recent article in Clinical Science, Ventura-Clapier et al. highlights the role of sexual dimorphism in mitochondrial function in health and disease. However, we feel the authors have overlooked arguably one of the most mitochondria-rich organs in skeletal muscle. Many studies have demonstrated that mitochondria have a central role in mediating the pathogenesis of myopathologies. However, the impact of sexual dimorphism in this context is less clear, with several studies reporting conflicting observations. For instance in ageing studies, a rodent model reported female muscles have higher antioxidant capacity compared with males; in contrast, human studies demonstrate no sex difference in mitochondrial bioenergetics and oxidative damage. These divergent observations highlight the importance of considering models and methods used to examine mitochondrial function, when interpreting these data. The use of either isolated or intact mitochondrial preparations in many studies appears likely to be a source of discord, when comparing many studies. Overall, it is now clear that more research is needed to determine if sexual dimorphism is a contributing factor in the development of myopathologies.
    • Neferine induces autophagy-dependent cell death in apoptosis-resistant cancers via ryanodine receptor and Ca

      Law, Betty Yuen Kwan; Michelangeli, Francesco; Qu, Yuan Qing; orcid: 0000-0003-3733-3661; Xu, Su-Wei; Han, Yu; Mok, Simon Wing Fai; Dias, Ivo Ricardo De Seabra Rodrigues; Javed, Masood-Ul-Hassan; Chan, Wai-Kit; Xue, Wei-Wei; et al. (2019-12-27)
      Resistance of cancer cells to chemotherapy is a significant clinical concern and mechanisms regulating cell death in cancer therapy, including apoptosis, autophagy or necrosis, have been extensively investigated over the last decade. Accordingly, the identification of medicinal compounds against chemoresistant cancer cells via new mechanism of action is highly desired. Autophagy is important in inducing cell death or survival in cancer therapy. Recently, novel autophagy activators isolated from natural products were shown to induce autophagic cell death in apoptosis-resistant cancer cells in a calcium-dependent manner. Therefore, enhancement of autophagy may serve as additional therapeutic strategy against these resistant cancers. By computational docking analysis, biochemical assays, and advanced live-cell imaging, we identified that neferine, a natural alkaloid from Nelumbo nucifera, induces autophagy by activating the ryanodine receptor and calcium release. With well-known apoptotic agents, such as staurosporine, taxol, doxorubicin, cisplatin and etoposide, utilized as controls, neferine was shown to induce autophagic cell death in a panel of cancer cells, including apoptosis-defective and -resistant cancer cells or isogenic cancer cells, via calcium mobilization through the activation of ryanodine receptor and Ulk-1-PERK and AMPK-mTOR signaling cascades. Taken together, this study provides insights into the cytotoxic mechanism of neferine-induced autophagy through ryanodine receptor activation in resistant cancers.
    • Neuropsychiatric symptoms following metal-on-metal implant failure with cobalt and chromium toxicity

      Green, Ben; Griffiths, Emily; Almond, Solomon; University of Chester; Public Health England (BioMed Central, 2016-01-24)
      Background: There were at least 31,171 metal-on-metal (MoM) hip implants in the UK between 2003 and 2011. Some of these were subject to failure and widescale recalls and revisions followed. Method This is a presentation of ten cases (mean age 60 years) where we evaluated neuropsychiatric morbidity following metal-on-metal hip implant failure and revision. Implants were ASR total hip replacement (acetabular implant, taper sleeve adaptor and unipolar femoral implants) performed between 2005 and 2009. This case series describes, for the first time, neuropsychiatric complications after revision where there has been cobalt and chromium toxicity. Results Pre-revision surgery, nine patients had toxic levels of chromium and cobalt (mean level chromium 338 nmol/l, mean cobalt 669.4 nmol/l). Depression assessment showed 9 of 9 respondents fulfilled the BDI criteria for depression and 3 of these were being treated. 7 of 9 patients showing short term memory deficit with mean mini mental state examination score of 24.2. The normal population mean MMSE for this group would be expected to be 28 with <25 indicating possible dementia. Conclusions We found neurocognitive and depressive deficits after cobalt and chromium metallosis following MoM implant failure. Larger studies of neurocognitive effects are indicated in this group. There may be implications for public health.
    • Nicotinamide alone accelerates the conversion of mouse embryonic stem cells into mature neuronal populations.

      Griffin, Sile M.; Pickard, Mark R.; Orme, Rowan P.; Hawkins, Clive P.; Williams, Adrian C.; Fricker, Rosemary; Keele University; University of Chester; University Hospital of North Staffordshire; University of Birmingham (Public Library of Science, 2017-08-17)
      Vitamin B3 has been shown to play an important role during embryogenesis. Specifically, there is growing evidence that nicotinamide, the biologically active form of vitamin B3, plays a critical role as a morphogen in the differentiation of stem cells to mature cell phenotypes, including those of the central nervous system (CNS). Detailed knowledge of the action of small molecules during neuronal differentiation is not only critical for uncovering mechanisms underlying lineage-specification, but also to establish more effective differentiation protocols to obtain clinically relevant cells for regenerative therapies for neurodegenerative conditions such as Huntington's disease (HD). Thus, this study aimed to investigate the potential of nicotinamide to promote the conversion of stem cells to mature CNS neurons. METHODS: Nicotinamide was applied to differentiating mouse embryonic stem cells (mESC; Sox1GFP knock-in 46C cell line) during their conversion towards a neural fate. Cells were assessed for changes in their proliferation, differentiation and maturation; using immunocytochemistry and morphometric analysis methods. RESULTS: Results presented indicate that 10 mM nicotinamide, when added at the initial stages of differentiation, promoted accelerated progression of ESCs to a neural lineage in adherent monolayer cultures. By 14 days in vitro (DIV), early exposure to nicotinamide was shown to increase the numbers of differentiated βIII-tubulin-positive neurons. Nicotinamide decreased the proportion of pluripotent stem cells, concomitantly increasing numbers of neural progenitors at 4 DIV. These progenitors then underwent rapid conversion to neurons, observed by a reduction in Sox 1 expression and decreased numbers of neural progenitors in the cultures at 14 DIV. Furthermore, GABAergic neurons generated in the presence of nicotinamide showed increased maturity and complexity of neurites at 14 DIV. Therefore, addition of nicotinamide alone caused an accelerated passage of pluripotent cells through lineage specification and further to non-dividing mature neurons. CONCLUSIONS: Our results show that, within an optimal dose range, nicotinamide is able to singly and selectively direct the conversion of embryonic stem cells to mature neurons, and therefore may be a critical factor for normal brain development, thus supporting previous evidence of the fundamental role of vitamins and their metabolites during early CNS development. In addition, nicotinamide may offer a simple effective supplement to enhance the conversion of stem cells to clinically relevant neurons.
    • Nicotinamide restricts neural precursor proliferation to enhance catecholaminergic neuronal subtype differentiation from mouse embryonic stem cells

      Borlongan, Cesar V.; Griffin, Síle M.; orcid: 0000-0002-6670-5084; email: silemgriffin@gmail.com; Pickard, Mark R.; Hawkins, Clive P.; Williams, Adrian C.; Fricker, Rosemary A.; orcid: 0000-0001-8768-510X (Public Library of Science, 2020-09-14)
      Emerging evidence indicates that a strong relationship exists between brain regenerative therapies and nutrition. Early life nutrition plays an important role during embryonic brain development, and there are clear consequences to an imbalance in nutritional factors on both the production and survival of mature neuronal populations and the infant’s risk of diseases in later life. Our research and that of others suggest that vitamins play a fundamental role in the formation of neurons and their survival. There is a growing body of evidence that nicotinamide, the water-soluble amide form of vitamin B3, is implicated in the conversion of pluripotent stem cells to clinically relevant cells for regenerative therapies. This study investigated the ability of nicotinamide to promote the development of mature catecholaminergic neuronal populations (associated with Parkinson’s disease) from mouse embryonic stem cells, as well as investigating the underlying mechanisms of nicotinamide’s action. Nicotinamide selectively enhanced the production of tyrosine hydroxylase-expressing neurons and serotonergic neurons from mouse embryonic stem cell cultures (Sox1GFP knock-in 46C cell line). A 5-Ethynyl-2´-deoxyuridine (EdU) assay ascertained that nicotinamide, when added in the initial phase, reduced cell proliferation. Nicotinamide drove tyrosine hydroxylase-expressing neuron differentiation as effectively as an established cocktail of signalling factors, reducing the proliferation of neural progenitors and accelerating neuronal maturation, neurite outgrowth and neurotransmitter expression. These novel findings show that nicotinamide enhanced and enriched catecholaminergic differentiation and inhibited cell proliferation by directing cell cycle arrest in mouse embryonic stem cell cultures, thus driving a critical neural proliferation-to-differentiation switch from neural progenitors to neurons. Further research into the role of vitamin metabolites in embryogenesis will significantly advance cell-based regenerative medicine, and help realize their role as crucial developmental signalling molecules in brain development.
    • Nurses attitudes and beliefs to attempted suicide in Southern India

      Jones, Steven; Krishna, Murali; Rajendra, Raj G.; Keenan, Paul; University of Chester (Taylor and Francis, 2015-05-20)
      Background: There is growing global interest into the attitudes and clinical management of persons who have attempted suicide. Aims: The principal purpose was to determine senior nursing staff attitudes towards patients who had attempted suicide from a professional and cultural perspective, which might influence care following hospital admission. The focus concerned nursing staff interactions at a psychological level that compete with physical tasks on general hospital wards. Methods: A qualitative methodology was employed with audio-taped interviews utilising four level data coding. This article reports on a group of 15 nursing staff from a large general hospital in Mysore, Southern India. Results: Findings suggested that patient care and treatment is directly influenced by the nurse’s religious beliefs within a general hospital setting with physical duties prioritised over psychological support, which was underdeveloped throughout the participant group. Conclusion: The results allow a series of recommendations for educational and skills initiatives before progressing to patient assessment and treatment projects and cross-cultural comparison studies. In addition, interventions must focus on current resources and context to move the evidence-based suicide prevention forward.
    • Occurrence of chemical pollutants in major e-waste sites in West Africa and usefulness of cytotoxicity and induction of ethoxyresorufin-O-deethylase (EROD) in determining the effects of some detected brominated flame retardants and e-waste soil-derived extracts.

      Eze, Chukwuebuka ThankGod; orcid: 0000-0001-8076-2926; email: thankgod.eze@fuoye.edu.ng; Michelangeli, Francesco; Otitoloju, Adebayo Akeem; Eze, Obianuju Oluchukwu; Ibraheem, Omodele; Ogbuene, Emeka Bright; Ogunwole, Germaine Akinola (2020-10-25)
      We investigated the occurrence of chemical pollutants in major e-waste sites in West Africa and usefulness of cytotoxicity and induction of ethoxyresorufin-O-deethylase (EROD) in determining the effects of some detected brominated flame retardants (BFRs) and e-waste soil-derived extracts. Analysis of the e-waste site samples using AAS and GC-MS techniques revealed the presence of a range of toxic metals as well as persistent and toxic organic pollutants, respectively, in the vicinity of the e-waste sites. As expected, the occurrence (%) of all the detected chemical pollutants in experimental soils significantly (P < 0.05) differs from occurrence (%) in control soil. The calculated LC values on RBL-2H3 cells of the detected tetrabromobisphenol A (TBBPA) and hexabromocyclododecane (HBCD) were 3.75 μM and 4.2 μM, respectively. Tribromophenol (TBP), dibromobiphenyl (DBB), and decabromodiphenyl ether (DBDE) were remarkably less toxic on RBL-2H3 cells compared with TBBPA and HBCD as they did not reduce RBL-2H3 cell viability below 50% in the tested concentration range (0-20 μM). The study revealed that TBBPA and HBCD could induce significant RBL-2H3 cell death through caspase-dependent apoptosis. The study further shows that the cytotoxicity of some of these BFRs could increase synergistically when in mixtures and potentially activate inflammation through the stimulation of mast cell degranulation. The e-waste soil-derived extracts induced a concentration-dependent increase in EROD activity in the exposed RTG-W1 cells. Ultimately, nonpolar extracts had higher EROD-inducing potency compared with polar extracts and hence suggesting the presence in higher amounts of AhR agonists in nonpolar e-waste soil-derived extracts than polar extracts. Overall, there is urgent need for actions in order to improve the environmental quality of the e-waste sites.
    • Oesophageal stenting: Status quo and future challenges.

      Kaltsidis, Harry; Mansoor, Wasat; Park, Jung-Hoon; Song, Ho-Young; Edwards, Derek W.; Laasch, Hans-Ulrich (2018-06-11)
      Oesophageal stents are widely used for palliating dysphagia from malignant obstruction. They are also used with increasing frequency in the treatment of oesophageal perforation, as well as benign strictures from a variety of causes. Improved oncological treatments have led to prolonged survival of patients treated with palliative intent; as a consequence, stents need to function and last longer in order to avoid repeat procedures. There is also increasing need for meticulous procedure planning, careful selection of the device most appropriate for the individual patient and planned follow-up. Furthermore, as more patients are cured, there will be more issues with resultant long-term side-effects, such as recalcitrant strictures due to radiotherapy or anastomotic scarring, which will have to be addressed. Stent design needs to keep up with the progress of cancer treatment, in order to offer patients the best possible long-term result. This review article attempts to illustrate the changing realities in oesophageal stenting, differences in current stent designs and behaviour, as well as the pressing need to refine and modify devices in order to meet the new challenges.