• A pilot randomised controlled trial of a programme of psychosocial interventions (Resettle) for high risk personality disordered offenders

      Nathan, Rajan; Centifanti, Luna; Baker, Vikki; Hill, Jonathan (Elsevier, 2019-07-08)
      Abstract Background Offenders with personality disorder experience significant co-morbid mental health problems and present with an increased risk of offending. The evidence for the effectiveness of interventions for personality disordered offenders in the community is limited. This study was a pilot study to determine the feasibility of a randomised controlled trial (RCT) of an intervention known as Resettle for personality disordered offenders and to explore the possible effects of this intervention. Methods Potential participants were recruited from referrals of male prisoners to Resettle. Those consenting underwent baseline assessments before being randomised to Resettle or treatment as usual. Officially recorded and self-report offending was assessed over two years following release from custody. Of the 110 eligible participants, 72 (65%) participated in the study of whom 38 were randomised to Resettle and 34 to treatment as usual. The two groups had a similar psychiatric and offending profile. Results Analysis of officially recorded offences at two years found mixed results, but whether adopting an intent-to-treat approach or including only those who received the intervention there was no clear evidence of an effect of the intervention. A comparison of self-report offending found no effect of Resettle in an intent-to-treat analysis, but there was an effect when the analysis involved only those participating in the intervention. Conclusions This study demonstrated that with some adjustments it was possible to carry out an RCT of a complex intervention for personality disordered offenders in a criminal justice setting. Some, but not conclusive, evidence was found in favour of the intervention.
    • Alignment of multiple glial cell populations in 3D nanofiber scaffolds: toward the development of multicellular implantable scaffolds for repair of neural injury

      Weightman, Alan P.; Jenkins, Stuart I.; Pickard, Mark R.; Chari, Divya M.; Yang, Ying; Keele University, United Kingdom (Elsevier, 2014-02)
      Non-neuronal cells of the central nervous system (CNS), termed "neuroglia," play critical roles in neural regeneration; therefore, replacement of glial populations via implantable nanofabricated devices (providing a growth-permissive niche) is a promising strategy to enhance repair. Most constructs developed to date have lacked three-dimensionality, multiple glial populations and control over spatial orientations, limiting their ability to mimic in vivo neurocytoarchitecture. We describe a facile technique to incorporate multiple glial cell populations [astrocytes, oligodendrocyte precursor cells (OPCs) and oligodendrocytes] within a three-dimensional (3D) nanofabricated construct. Highly aligned nanofibers could induce elongation of astrocytes, while OPC survival, elongation and maturation required pre-aligned astrocytes. The potential to scale-up the numbers of constituent nanofiber layers is demonstrated with astrocytes. Such complex implantable constructs with multiple glial sub-populations in defined 3D orientations could represent an effective approach to reconstruct glial circuitry in neural injury sites.
    • Anti-epileptic drugs and bone loss: phenytoin reduces pro-collagen I and alters the electrophoretic mobility of osteonectin in cultured bone cells.

      Wilson, Emma L.; Garton, Mark; Fuller, Heidi R.; RJAH Orthopaedic Hospital; RJAH Orthopaedic NHS Foundation Trust; Keele University (Elsevier, 2016-05-31)
      Phenytoin is an antiepileptic drug used in the management of partial and tonic-clonic seizures. In previous studies we have shown that valproate, another antiepileptic drug, reduced the amount of two key bone proteins, pro-collagen I and osteonectin (SPARC, BM-40), in both skin fibroblasts and cultured osteoblast-like cells. Here we show that phenytoin also reduces pro-collagen I production in osteoblast-like cells, but does not appear to cause a decrease in osteonectin message or protein production. Instead, a 24h exposure to a clinically relevant concentration of phenytoin resulted in a dose-dependent change in electrophoretic mobility of osteonectin, which was suggestive of a change in post-translational modification status. The perturbation of these important bone proteins could be one of the mechanisms to explain the bone loss that has been reported following long-term treatment with phenytoin.
    • Canine mesenchymal stem cells are neurotrophic and angiogenic: An in vitro assessment of their paracrine activity.

      Johnson, William Eustace Basil; Al Delfi, Ibtesam; Aston University, University of Chester, Veterinary Tissue Bank Ltd (Elsevier, 2016-09-19)
      Mesenchymal stem cells (MSCs) have been used in cell replacement therapies for connective tissue damage, but also can stimulate wound healing through paracrine activity. In order to further understand the potential use of MSCs to treat dogs with neurological disorders, this study examined the paracrine action of adipose-derived canine MSCs on neuronal and endothelial cell models. The culture-expanded MSCs exhibited a MSC phenotype according to plastic adherence, cell morphology, CD profiling and differentiation potential along mesenchymal lineages. Treating the SH-SY5Y neuronal cell line with serum-free MSC culture-conditioned medium (MSC CM) significantly increased SH-SY5Y cell proliferation (P <0.01), neurite outgrowth (P = 0.0055) and immunopositivity for the neuronal marker βIII-tubulin (P = 0.0002). Treatment of the EA.hy926 endothelial cell line with MSC CM significantly increased the rate of wound closure in endothelial cell scratch wound assays (P = 0.0409), which was associated with significantly increased endothelial cell proliferation (P <0.05) and migration (P = 0.0001). Furthermore, canine MSC CM induced endothelial tubule formation in EA.hy926 cells in a soluble basement membrane matrix. Hence, this study has demonstrated that adipose-derived canine MSC CM stimulated neuronal and endothelial cells probably through the paracrine activity of MSC-secreted factors. This supports the use of canine MSC transplants or their secreted products in the clinical treatment of dogs with neurological disorders and provides some insight into possible mechanisms of action.
    • Cardiac Rehabilitation Delivery Model for Low-Resource Settings: An International Council of Cardiovascular Prevention and Rehabilitation Consensus Statement

      Grace, Sherry L.; Turk-Adawi, Karam I.; Contractor, Aashish; Atrey, Alison; Campbell, Norman R. C.; Derman, Wayne; Ghisi, Gabriela L. M.; Sarkar, Bidyut K.; Yeo, Tee J.; Lopez-Jimenenez, Francisco; et al. (Elsevier, 2016-08-17)
      Cardiovascular disease (CVD) is a global epidemic, which is largely preventable. Cardiac rehabilitation (CR) is demonstrated to be efficacious and cost-effective for secondary prevention in high-income countries. Given its affordability, CR should be more broadly implemented in middle-income countries as well. Hence, the International Council of Cardiovascular Prevention and Rehabilitation (ICCPR) convened a writing panel to recommend strategies to deliver all core CR components in low-resource settings, namely: (1) initial assessment, (2) lifestyle risk factor management (i.e., diet, tobacco, mental health), (3) medical risk factor management (lipids, blood pressure), (4) education for self-management; (5) return to work; and (6) outcome evaluation. Approaches to delivering these components in alternative, arguably lower-cost settings, such as the home, community and primary care, are provided. Recommendations on delivering each of these components where the most-responsible CR provider is a non-physician, such as an allied healthcare professional or community health care worker, are also provided.
    • High drug related mortality rates following prison release: Assessing the acceptance likelihood of a naltrexone injection and related concerns

      Murphy, Philip N.; Mohammed, Faizal; Wareing, Michelle; Cotton, Angela; McNeil, John; Irving, Paula; Jones, Steven; Sharples, Louisa; Monk, Rebecca; Elton, Peter; et al. (Elsevier, 2018-07-04)
      Background and aims. High drug related mortality amongst former prisoners in the 4 weeks following release is an internationally recognised problem. Naltrexone injections at release could diminish this by blockading opioid receptors, but naltrexone is not licenced for injection for treating opiate misuse in the United Kingdom and some other countries. This study examined the likelihood of accepting a naltrexone injection at release, and the relationship of this likelihood to other relevant variables. Method. Sixty-one male prisoners with a history of heroin use, who were approaching release from two prisons in the north-west of England, provided likelihood ratings for accepting a naltrexone injection if it were to have been available. Additional data was gathered regarding demographic and drug use histories, and also from psychometric instruments relevant to drug misuse and treatment preparedness. Results. Maximum likelihood ratings for accepting a naltrexone injection were recorded by 55.7% of the sample with only 9.8% indicating no likelihood of accepting an injection. Likelihood ratings were positively related to serving a current sentence for an acquisitive offence compared to drug related or violence offences, and negatively related to peak methadone dosages during the current sentence. Conclusions. Although naltrexone injections were not available to participants in this study, the findings suggest that the potential uptake for this intervention is sufficient to warrant a clinical trial with this population of British prisoners, with a view to potential changes to its current licencing status
    • An in vitro spinal cord injury model to screen neuroregenerative materials

      Weightman, Alan P.; Pickard, Mark R.; Yang, Ying; Chari, Divya M.; Keele University (Elsevier, 2014-01-29)
      Implantable 'structural bridges' based on nanofabricated polymer scaffolds have great promise to aid spinal cord regeneration. Their development (optimal formulations, surface functionalizations, safety, topographical influences and degradation profiles) is heavily reliant on live animal injury models. These have several disadvantages including invasive surgical procedures, ethical issues, high animal usage, technical complexity and expense. In vitro 3-D organotypic slice arrays could offer a solution to overcome these challenges, but their utility for nanomaterials testing is undetermined. We have developed an in vitro model of spinal cord injury that replicates stereotypical cellular responses to neurological injury in vivo, viz. reactive gliosis, microglial infiltration and limited nerve fibre outgrowth. We describe a facile method to safely incorporate aligned, poly-lactic acid nanofibre meshes (±poly-lysine + laminin coating) within injury sites using a lightweight construct. Patterns of nanotopography induced outgrowth/alignment of astrocytes and neurons in the in vitro model were strikingly similar to that induced by comparable materials in related studies in vivo. This highlights the value of our model in providing biologically-relevant readouts of the regeneration-promoting capacity of synthetic bridges within the complex environment of spinal cord lesions. Our approach can serve as a prototype to develop versatile bio-screening systems to identify materials/combinatorial strategies for regenerative medicine, whilst reducing live animal experimentation.
    • Mechanisms of skeletal muscle ageing: avenues for therapeutic intervention

      Nye, Gareth; McCormick, Rachel; Lightfoot, Adam; McArdle, Anne; University of Liverpool (Elsevier, 2014-05-28)
      Age-related loss of muscle mass and function, termed sarcopenia, is a catastrophic process, which impacts severely on quality of life of older people. The mechanisms underlying sarcopenia are unclear and the development of optimal therapeutic interventions remains elusive. Impaired regenerative capacity, attenuated ability to respond to stress, elevated reactive oxygen species production and low-grade systemic inflammation are all key contributors to sarcopenia. Pharmacological intervention using compounds such as 17AAG, SS-31 and Bimagrumab or naturally occurring polyphenols to target specific pathways show potential benefit to combat sarcopenia although further research is required, particularly to identify the mechanisms by which muscle fibres are completely lost with increasing age.
    • Promoting patient utilization of outpatient cardiac rehabilitation: A joint International Council and Canadian Association of Cardiovascular Prevention and Rehabilitation position statement

      Santiago de Araújo Pio, Carolina; Varnfield, Marlien; Sarrafzadegan, Nizal; Beckie, Theresa M.; Babu, Abraham S.; Baidya, Sumana; Buckley, John P.; Chen, Ssu-Yuan; Gagliardi, Anna; Heine, Martin; et al. (Elsevier, 2019-07-04)
      Background: Cardiac Rehabilitation (CR) is a recommendation in international clinical practice guidelines given its’ benefits, however use is suboptimal. The purpose of this position statement was to translate evidence on interventions that increase CR enrolment and adherence into implementable recommendations. Methods: The writing panel was constituted by representatives of societies internationally concerned with preventive cardiology, and included disciplines that would be implementing the recommendations. Patient partners served, as well as policy-makers. The statement was developed in accordance with AGREE II, among other guideline checklists. Recommendations were based on our update of the Cochrane review on interventions to promote patient utilization of CR. These were circulated to panel members, who were asked to rate each on a 7-point Likert scale in terms of scientific acceptability, actionability, and feasibility of assessment. A web call was convened to achieve consensus and confirm strength of the recommendations (based on GRADE). The draft underwent external review and public comment. Results: The 3 drafted recommendations were that to increase enrolment, healthcare providers, particularly nurses (strong), should promote CR to patients face-to-face (strong), and that to increase adherence part of CR could be delivered remotely (weak). Ratings for the 3 recommendations were 5.95±0.69 (mean ± standard deviation), 5.33±1.12 and 5.64±1.08, respectively. Conclusions: Interventions can significantly increase utilization of CR, and hence should be widely applied. We call upon cardiac care institutions to implement these strategies to augment CR utilization, and to ensure CR programs are adequately resourced to serve enrolling patients and support them to complete programs.
    • The protein phosphatase 4 - PEA15 axis regulates the survival of breast cancer cells

      Mohammed, Hiba N.; Pickard, Mark R.; Mourtada-Maarabouni, Mirna; Keele University; University of Chester (Elsevier, 2016-06-15)
      BACKGROUND: The control of breast cell survival is of critical importance for preventing breast cancer initiation and progression. The activity of many proteins which regulate cell survival is controlled by reversible phosphorylation, so that the relevant kinases and phosphatases play crucial roles in determining cell fate. Several protein kinases act as oncoproteins in breast cancer and changes in their activities contribute to the process of transformation. Through counteracting the activity of oncogenic kinases, the protein phosphatases are also likely to be important players in breast cancer development, but this class of molecules is relatively poorly understood. Here we have investigated the role of the serine/threonine protein phosphatase 4 in the control of cell survival of breast cancer cells. METHODS: The breast cancer cell lines, MCF7 and MDA-MB-231, were transfected with expression vectors encoding the catalytic subunit of protein phosphatase 4 (PP4c) or with PP4c siRNAs. Culture viability, apoptosis, cell migration and cell cycle were assessed. The involvement of phosphoprotein enriched in astrocytes 15kDa (PEA15) in PP4c action was investigated by immunoblotting approaches and by siRNA-mediated silencing of PEA15. RESULTS: In this study we showed that PP4c over-expression inhibited cell proliferation, enhanced spontaneous apoptosis and decreased the migratory and colony forming abilities of breast cancer cells. Moreover, PP4c down-regulation produced complementary effects. PP4c is demonstrated to regulate the phosphorylation of PEA15, and PEA15 itself regulates the apoptosis of breast cancer cells. The inhibitory effects of PP4c on breast cancer cell survival and growth were lost in PEA15 knockdown cells, confirming that PP4c action is mediated, at least in part, through the de-phosphorylation of apoptosis regulator PEA15. CONCLUSION: Our work shows that PP4 regulates breast cancer cell survival and identifies a novel PP4c-PEA15 signalling axis in the control of breast cancer cell survival. The dysfunction of this axis may be important in the development and progression of breast cancer.
    • Spinal motor neurite outgrowth over glial scar inhibitors is enhanced by coculture with bone marrow stromal cells

      Wright, Karina; Johnson, William Eustace Basil; Uchida, Kenzo; Bara, Jennifer J.; Roberts, Sally; Masari, Wagih E.; Aston University; Keele University
      BACKGROUND CONTEXT: Transplantation of bone marrow cells into spinal cord lesions promotes functional recovery in animal models, and recent clinical trials suggest possible recovery also in humans. The mechanisms responsible for these improvements are still unclear. PURPOSE: To characterize spinal cord motor neurite interactions with human bone marrow stromal cells (MSCs) in an in vitro model of spinal cord injury (SCI). STUDY DESIGN/SETTING: Previously, we have reported that human MSCs promote the growth of extending sensory neurites from dorsal root ganglia (DRG), in the presence of some of the molecules present in the glial scar, which are attributed with inhibiting axonal regeneration after SCI. We have adapted and optimized this system replacing the DRG with a spinal cord culture to produce a central nervous system (CNS) model, which is more relevant to the SCI situation. METHODS: We have developed and characterized a novel spinal cord culture system. Human MSCs were cocultured with spinal motor neurites in substrate choice assays containing glial scar–associated inhibitors of nerve growth. In separate experiments, MSC-conditioned media were analyzed and added to spinal motor neurites in substrate choice assays. RESULTS: As has been reported previously with DRG, substrate-bound neurocan and Nogo-A repelled spinal neuronal adhesion and neurite outgrowth, but these inhibitory effects were abrogated in MSC/spinal cord cocultures. However, unlike DRG, spinal neuronal bodies and neurites showed no inhibition to substrates of myelin-associated glycoprotein. In addition, the MSC secretome contained numerous neurotrophic factors that stimulated spinal neurite outgrowth, but these were not sufficient stimuli to promote spinal neurite extension over inhibitory concentrations of neurocan or Nogo-A. CONCLUSIONS: These findings provide novel insight into how MSC transplantation may promote regeneration and functional recovery in animal models of SCI and in the clinic, especially in the chronic situation in which glial scars (and associated neural inhibitors) are well established. In addition, we have confirmed that this CNS model predominantly comprises motor neurons via immunocytochemical characterization. We hope that this model may be used in future research to test various other potential interventions for spinal injury or disease states
    • SS-31 attenuates TNF-α induced cytokine release from C2C12 myotubes

      Nye, Gareth; Lightfoot, Adam; Sakellariou, Giorgos; McArdle, Francis; Jackson, Malcolm; Griffiths, Richard; McArdle, Anne; University of Liverpool (Elsevier, 2015-08-10)
      TNF-α is a key inflammatory mediator and is proposed to induce transcriptional responses via the mitochondrial generation of Reactive Oxygen Species (ROS). The aim of this study was to determine the effect of TNF-α on the production of myokines by skeletal muscle. Significant increases were seen in the release of IL-6, MCP-1/CCL2, RANTES/CCL5 and KC/CXCL1 and this release was inhibited by treatment with Brefeldin A, suggesting a golgi-mediated release of cytokines by muscle cells. An increase was also seen in superoxide in response to treatment with TNF-α, which was localised to the mitochondria and this was also associated with activation of NF-κB. The changes in superoxide, activation of NF-kB and release of myokines were attenuated following pre-treatment with SS-31 peptide indicating that the ability of TNF-α to induce myokine release may be mediated through mitochondrial superoxide, which is, at least in part, associated with activation of the redox sensitive transcription factor NF-kB.
    • Stent Migration Following Endovascular Sealing of Abdominal Aortic Aneurysms

      Yafawi, Asma; McWilliams, Richard G.; Fisher, Robert K.; England, Andrew; Karouki, Maria; Torella, Francesco (Elsevier, 2019-12-09)
    • Systematic review and meta-analysis of group cognitive behavioural psychotherapy for sub-clinical depression

      Krishna, Murali; Lepping, Peter; Jones, Steven; Lane, Stephen; University of Chester (Elsevier, 2015-06-04)
      Key Points • Group CBT for patients with sub-threshold depression has a significant effect on depressive symptomatology at post treatment in both working age and older adult population. • Group CBT does not appear to reduce the incidence of major depressive disorders. • Group CBT has minimal or no effect on depressive symptomatology during follow-up. The article considers group psychotherapy in sub-threshold depression to investigate if group psychological interventions reduce depressive symptoms post treatment, and whether these interventions result in a reduced incidence of new cases of major depressive disorder.