• GAS5 lncRNA Modulates the Action of mTOR Inhibitors in Prostate Cancer Cells

      Yacqub-Usman, Kiren; Pickard, Mark R.; Williams, Gwyn T.; Keele University, United Kingdom (NCRI Cancer Conference 2014 Abstracts, 2014)
      Background There is a need to develop new therapies for castrate-resistant prostate cancer (CRPC) and growth arrest-specific 5 (GAS5) long non-coding RNA (lncRNA), which riborepresses androgen receptor action, may offer novel opportunities in this regard. GAS5 lncRNA expression declines as prostate cancer cells acquire castrate-resistance, and decreased GAS5 expression attenuates the responses of prostate cancer cells to apoptotic stimuli. Enhancing GAS5 lncRNA expression may therefore offer a strategy to improve the effectiveness of chemotherapeutic agents. GAS5 is a member of the 5' terminal oligopyrimidine gene family, and we have therefore examined if mTOR inhibition can enhance cellular GAS5 levels in prostate cancer cells. In addition, we have determined if GAS5 lncRNA itself is required for mTOR inhibitor action in prostate cancer cells, as recently demonstrated in lymphoid cells. Method The effects of mTOR inhibitors on GAS5 lncRNA expression and cell proliferation were determined in a range of prostate cancer cell lines. Transfection of cells with GAS5 siRNA and plasmid constructs was performed to determine the involvement of GAS5 lncRNA in mTOR inhibitor action. Results Treatment with rapamycin and rapalogues increased cellular GAS5 levels and inhibited culture growth in both androgen-dependent (LNCaP) and androgen-sensitive (22Rv1) cell lines, but not in androgen-independent (PC-3 and DU145) cells. GAS5 silencing in both LNCaP and 22Rv1 cells decreased their sensitivity to growth inhibition by mTOR inhibitors. Moreover, transfection of GAS5 lncRNA sensitized PC-3 and DU145 cells to mTOR inhibitors, resulting in inhibition of culture growth. Conclusion mTOR inhibition enhances GAS5 transcript levels in some, but not all, prostate cancer cell lines. This may in part be related to endogenous levels of GAS5 expression, which tend to be lower in prostate cancer cells representative of advanced disease, particularly since current findings demonstrate a role for GAS5 lncRNA in mTOR inhibitor action in prostate cancer cells.
    • Reciprocal regulation of GAS5 lncRNA levels and mTOR inhibitor action in prostate cancer cells.

      Yacqub-Usman, Kiren; Pickard, Mark R.; Williams, Gwyn T.; Keele University (Wiley, 2015-02-03)
      BACKGROUND: New therapies are required for castrate-resistant prostate cancer (CRPC), and growth-arrest specific 5 (GAS5) lncRNA, which riborepresses androgen receptor action, may offer novel opportunities in this regard. This lncRNA promotes the apoptosis of prostate cancer cells and its levels decline as prostate cancer cells acquire castrate-resistance, so that enhancing GAS5 expression may improve the effectiveness of chemotherapies. Since GAS5 is a member of the 5' terminal oligopyrimidine gene family, we have examined mTOR inhibition as a strategy to increase GAS5 expression. Furthermore, we have determined if GAS5 itself mediates the action of mTOR inhibitors, as demonstrated for other chemotherapeutic agents in prostate cancer cells. METHODS: The effects of mTOR inhibitors on GAS5 lncRNA levels and cell growth were determined in a range of prostate cancer cell lines. Transfection of cells with GAS5 siRNAs and plasmid constructs was performed to determine the involvement of GAS5 lncRNA in mTOR inhibitor action. RESULTS: First generation mTORC1, combined mTORC1/mTORC2 and dual PI3K/mTOR inhibitors all increased cellular GAS5 levels and inhibited culture growth in androgen-dependent (LNCaP) and androgen-sensitive (22Rv1) cell lines, but not in androgen-independent (PC-3 and DU 145) cell lines. The latter exhibited low endogenous GAS5 expression, and GAS5 silencing in LNCaP and 22Rv1 cells decreased the sensitivity to mTOR inhibitors, whereas transfection of GAS5 lncRNA sensitized PC-3 and DU 145 cells to these agents. CONCLUSION: mTOR inhibition enhances GAS5 transcript levels in certain prostate cancer cell lines. This selectivity is likely to be related to endogenous GAS5 expression levels, since GAS5 lncRNA is itself required for mTOR inhibitor action in prostate cancer cells.
    • Retroviral insertional mutagenesis implicates E3 ubiquitin ligase RNF168 in the control of cell proliferation and survival

      Kizilors, Aytug; Pickard, Mark R.; Schulte, Cathleen E.; Yacqub-Usman, Kiren; McCarthy, Nicola J.; Gan, Shu-Uin; Darling, David; Gäken, Joop; Williams, Gwyn T.; Farzaneh, Farzin; et al. (Portland Press, 2017-08-14)
      The E3 ubiquitin ligase RNF168 is a ring finger protein that has previously been identified to play an important regulatory role in the repair of double-strand DNA breaks. In the present study, an unbiased forward genetics functional screen in mouse granulocyte/ macrophage progenitor cell line FDCP1 has identified E3 ubiquitin ligase RNF168 as a key regulator of cell survival and proliferation. Our data indicate that RNF168 is an important component of the mechanisms controlling cell fate, not only in human and mouse haematopoietic growth factor-dependent cells, but also in the human breast epithelial cell line MCF-7. These observations therefore suggest that RNF168 provides a connection to key pathways controlling cell fate, potentially through interaction with PML nuclear bodies and/or epigenetic control of gene expression. Our study is the first to demonstrate a critical role for RNF168 in the in the mechanisms regulating cell proliferation and survival, in addition to its well-established role in DNA repair.