• Cancerous inhibitor of protein phosphatase 2A (CIP2A) modifies energy metabolism via 5′ AMP-activated protein kinase signalling in malignant cells

      Austin, James A.; orcid: 0000-0002-5384-5221; Jenkins, Rosalind E.; Austin, Gemma M.; Glenn, Mark A.; Dunn, Karen; Scott, Laura; Lucas, Claire M.; Clark, Richard E. (Portland Press Ltd., 2019-08-15)
      Abstract Cancerous inhibitor of protein phosphatase 2A (CIP2A) is an adverse biomarker across many malignancies. Using K562 cells engineered to have high or low CIP2A expression, we show that high CIP2A levels significantly bias cellular energy production towards oxidative phosphorylation (OXPHOS) rather than glycolysis. Mass spectrometric analysis of CIP2A interactors and isobaric tagging for relative and absolute protein quantitation (ITRAQ) experiments identified many associated proteins, several of which co-vary with CIP2A level. Many of these CIP2A associating and co-varying proteins are involved in energy metabolism including OXPHOS, or in 5′ AMP-activated protein kinase (AMPK) signalling, and manipulating AMPK activity mimics the effects of low/high CIP2A on OXPHOS. These effects are dependent on the availability of nutrients, driven by metabolic changes caused by CIP2A. CIP2A level did not affect starvation-induced AMPK phosphorylation of Unc-51 autophagy activating kinase 1 (ULK-1) at Ser555, but autophagy activity correlated with an increase in AMPK activity, to suggest that some AMPK processes are uncoupled by CIP2A, likely via its inhibition of protein phosphatase 2A (PP2A). The data demonstrate that AMPK mediates this novel CIP2A effect on energy generation in malignant cells.
    • CIP2A- and SETBP1-mediated PP2A inhibition reveals AKT S473 phosphorylation to be a new biomarker in AML

      Hills, Robert; Burnett, Alan; Lucas, Claire; Scott, Laura; Carmell, Natasha; Holcroft, Alison; Clark, Richard; University of Liverpool, Royal Liverpool University hospital, University of Cardiff (American Society for Hematology, 2018-04-27)
      Key Points PP2A inhibition occurs in AML by 2 different pathways: CIP2A in normal karyotype patients and SETBP1 in adverse karyotype patients. AKTS473 phosphorylation is a predictor of survival, and diagnostic levels of AKTS473 could be a novel biomarker in AML.
    • High CIP2A levels correlate with an antiapoptotic phenotype that can be overcome by targeting BCL-XL in chronic myeloid leukemia. Leukemia

      Lucas, Claire; Milani, Mateus; Butterworth, Michael; Carmell, Natasha; Scott, Laura; Clark, Richard; Cohen, Gerald; Varadarajan, Shankar; University of Liverpool (Nature, 2016-02-29)
      Cancerous inhibitor of protein phosphatase 2A (CIP2A) is a predictive biomarker of disease progression in many malignancies, including imatinib-treated chronic myeloid leukemia (CML). Although high CIP2A levels correlate with disease progression in CML, the underlying molecular mechanisms remain elusive. In a screen of diagnostic chronic phase samples from patients with high and low CIP2A protein levels, high CIP2A levels correlate with an antiapoptotic phenotype, characterized by downregulation of proapoptotic BCL-2 family members, including BIM, PUMA and HRK, and upregulation of the antiapoptotic protein BCL-XL. These results suggest that the poor prognosis of patients with high CIP2A levels is due to an antiapoptotic phenotype. Disrupting this antiapoptotic phenotype by inhibition of BCL-XL via RNA interference or A-1331852, a novel, potent and BCL-XL-selective inhibitor, resulted in extensive apoptosis either alone or in combination with imatinib, dasatinib or nilotinib, both in cell lines and in primary CD34(+) cells from patients with high levels of CIP2A. These results demonstrate that BCL-XL is the major antiapoptotic survival protein and may be a novel therapeutic target in CML.
    • Second generation tyrosine kinase inhibitors prevent disease progression in high-risk (high CIP2A) chronic myeloid leukaemia patients.

      Lucas, Claire; Harris, Robert; Holcroft, Alison; Scott, Laura; Carmell, Natasha; McDonald, Elizabeth; Polydoros, Fotis; Clark, Richard (Nature, 2015-03-13)
      High cancerous inhibitor of PP2A (CIP2A) protein levels at diagnosis of chronic myeloid leukaemia (CML) are predictive of disease progression in imatinib-treated patients. It is not known whether this is true in patients treated with second generation tyrosine kinase inhibitors (2G TKI) from diagnosis, and whether 2G TKIs modulate the CIP2A pathway. Here, we show that patients with high diagnostic CIP2A levels who receive a 2G TKI do not progress, unlike those treated with imatinib (P=<0.0001). 2G TKIs induce more potent suppression of CIP2A and c-Myc than imatinib. The transcription factor E2F1 is elevated in high CIP2A patients and following 1 month of in vivo treatment 2G TKIs suppress E2F1 and reduce CIP2A; these effects are not seen with imatinib. Silencing of CIP2A, c-Myc or E2F1 in K562 cells or CML CD34+ cells reactivates PP2A leading to BCR-ABL suppression. CIP2A increases proliferation and this is only reduced by 2G TKIs. Patients with high CIP2A levels should be offered 2G TKI treatment in preference to imatinib. 2G TKIs disrupt the CIP2A/c-Myc/E2F1 positive feedback loop, leading to lower disease progression risk. The data supports the view that CIP2A inhibits PP2Ac, stabilising E2F1, creating a CIP2A/c-Myc/E2F1 positive feedback loop, which imatinib cannot overcome.