• Experimental and process modelling study of integration of a micro-turbine with an amine plant

      Agbonghae, Elvis O.; Best, Thom; Finney, Karen N.; Font Palma, Carolina; Hughes, Kevin J.; Pourkashanian, Mohamed; University of Leeds (Elsevier, 2014-12-31)
      An integrated model of a micro-turbine coupled to a CO2 capture plant has been developed with Aspen Plus, and validated with experimental data obtained from a Turbec T100 microturbine at the PACT facilities in the UKCCS Research Centre, Beighton, UK. Monoethanolamine (MEA) was used as solvent and experimental measurements from the CO2 capture plant have been used to validate the steady-state model developed with Aspen Plus®. The optimum liquid/gas ratio and the lean CO2 loading for 90% CO2 capture has been quantified for flue gases with CO2 concentrations ranging from 3 to 8 mol%.
    • Process simulation and thermodynamic analysis of a micro turbine with post-combustion CO2 capture and exhaust gas recirculation

      Ali, Usman; Best, Thom; Finney, Karen N.; Font Palma, Carolina; Hughes, Kevin J.; Ingham, Derek B.; Pourkashanian, Mohamed; University of Leeds (Elsevier, 2014-12-31)
      With the effects of the emissions from power plants causing global climate change, the trend towards lower emission systems such as natural gas power plant is increasing. In this paper a Turbec T100 micro gas turbine is studied. The system is assessed thermodynamically using a steady-state model; model results of its alteration with exhaust gas recirculation (EGR) are presented in this paper. The process simulation with EGR offers a useful assessment when integrated with post-combustion CO2 capture. The EGR model results in the enrichment of the CO2 which decrease the energy demand of the CO2 capture system.
    • Prospects for petcoke utilization with CO 2 capture in Mexico

      Font Palma, Carolina; Gonzalez Diaz, Abigail; University of Chester; Instituto Nacional de Electricidad y Energías Limpias (INEEL) (Elsevier, 2018-01-31)
      This paper evaluates the introduction of carbon capture and storage (CCS) to Mexico. The gasification technology is presented as a potential alternative to be applied into refinery plants due to high petcoke production. Although economic aspects, such as fuel price and selling CO2, are important in the selection of CCS alternatives, there are other limitations, i.e. water availability and space. In March 2014, Mexico launched its CCS technological roadmap. However, an evaluation of the installation of new CO2-capture ready power plants was not considered. For that reason, this study could be useful to create a technology roadmap that includes the design of CO2 capture plants into refineries and how they will have to operate for CO2 emissions reduction, and taking advantage that most of refineries and petrochemical plants are close to oil fields for enhanced oil recovery (EOR). Integrated gasification combined cycle (IGCC) with CCS was chosen in this paper for power generation using petcoke as feedstock. The emissions of CO2 in kg/kWh could be reduced by 68%.