• Benchmarking of a micro gas turbine model integrated with post-combustion CO2 capture

      Usman, Ali; Font Palma, Carolina; Nikpey Somehsaraei, Homam; Mansouri Majoumerd, Mohammad; Akram, Muhammad; Finney, Karen N.; Best, Thom; Mohd Said, Nassya B.; Assadi, Mohsen; Pourkashanian, Mohamed; et al. (Elsevier, 2017-03-19)
      The deployment of post-combustion CO2 capture on large-scale gas-fired power plants is currently progressing, hence the integration of the power and capture plants requires a good understanding of operational requirements and limitations to support this effort. This article aims to assist research in this area, by studying a micro gas turbine (MGT) integrated with an amine-based post-combustion CO2 capture unit. Both processes were simulated using two different software tools –IPSEpro and Aspen Hysys, and validated against experimental tests. The two MGT models were benchmarked at the nominal condition, and then extended to part-loads (50 and 80 kWe), prior to their integration with the capture plant at flue gas CO2 concentrations between 5 and 10 mol%. Further, the performance of the MGT and capture plant when gas turbine exhaust gases were recirculated was assessed. Exhaust gas recirculation increases the CO2 concentration, and reduces the exhaust gas flowrate and specific reboiler duty. The benchmarking of the two models revealed that the IPSEpro model can be easily adapted to new MGT cycle modifications since turbine temperatures and rotational speeds respond to reaching temperature limits; whilst a detailed rate-based approach for the capture plant in Hysys resulted in closely aligned simulation results with experimental data.
    • Evaluation of a Micro Gas Turbine With Post-Combustion CO2 Capture for Exhaust Gas Recirculation Potential With Two Experimentally Validated Models

      Nikpey Somehsaraei, Homam; Ali, Usman; Font-Palma, Carolina; Mansouri Majoumerd, Mohammad; Akram, Muhammad; Pourkashanian, Mohamed; Assadi, Mohsen (American Society of Mechanical Engineers, 2017-08-17)
      The growing global energy demand is facing concerns raised by increasing greenhouse gas emissions, predominantly CO2. Despite substantial progress in the field of renewable energy in recent years, quick balancing responses and back-up services are still necessary to maintain the grid load and stability, due to increased penetration of intermittent renewable energy sources, such as solar and wind. In a scenario of natural gas availability, gas turbine power may be a substitute for back-up/balancing load. Rapid start-up and shut down, high ramp rate, and low emissions and maintenance have been achieved in commercial gas turbine cycles. This industry still needs innovative cycle configurations, e.g. exhaust gas recirculation (EGR), to achieve higher system performance and lower emissions in the current competitive power generation market. Together with reduced NOx emissions, EGR cycle provides an exhaust gas with higher CO2 concentration compared to the simple gas turbine/combined cycle, favorable for post-combustion carbon capture. This paper presents an evaluation of EGR potential for improved gas turbine cycle performance and integration with a post-combustion CO2 capture process. It also highlights features of two software tools with different capabilities for performance analysis of gas turbine cycles, integrated with post-combustion capture. The study is based on a combined heat and power micro gas turbine (MGT), Turbec T100, of 100kWe output. Detailed models for the baseline MGT and amine capture plant were developed in two software tools, IPSEpro and Aspen Hysys. These models were validated against experimental work conducted at the UK PACT National Core Facilities. Characteristics maps for the compressor and the turbine were used for the MGT modeling. The performance indicators of systems with and without EGR, and when varying the EGR ratio and ambient temperature, were calculated and are presented in this paper.