• Login / Register
    Search 
    •   Home
    • Faculty of Science and Engineering
    • Natural Sciences
    • Search
    •   Home
    • Faculty of Science and Engineering
    • Natural Sciences
    • Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of ChesterRepCommunitiesTitleAuthorsPublication DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsPublication DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    Filter by Category

    Subjects
    Flow Battery (1)
    View MoreAuthorsDavies, Trevor J. (1)Gunn, Natasha (1)Ward, David (1)Types
    Presentation (1)

    About

    AboutUniversity of Chester

    Statistics

    Display statistics
     

    Search

    Show Advanced FiltersHide Advanced Filters

    Filters

    Now showing items 1-1 of 1

    • List view
    • Grid view
    • Sort Options:
    • Relevance
    • Title Asc
    • Title Desc
    • Issue Date Asc
    • Issue Date Desc
    • Results Per Page:
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100

    • 1CSV
    • 1RefMan
    • 1EndNote
    • 1BibTex
    • Selective Export
    • Select All
    • Help
    Thumbnail

    The Importance of Cell Compression Pressure for Flow Battery Performance

    Davies, Trevor J.; Gunn, Natasha; Ward, David (The International Flow Battery Forum, 2016-06)
    Compared to fuel cells, which possess similar cell architecture, flow batteries have poor performance. For example, conventional fuel cells can easily achieve current densities of 1.5 A cm-2 whereas the corresponding figure for the all vanadium flow battery (VFB) is an order of magnitude less, often less than 0.2 A cm 2 [1]. Consequently, relatively large flow battery cells are required for a given power, increasing the cost of the technology. There are a few noticeable exceptions to the relatively poor performance of flow batteries, including the work of Zawodzinski et al. who achieved current densities in excess of 0.8 A cm 2 with a VFB [2]. Most impressively, Weber and co-workers achieved current densities as high as 4 A cm 2 with a H2-Br2 flow battery [3]. In both cases, the researchers used fuel cell components and fuel cell assembly techniques to minimize the cell ohmic resistance, particularly the contact resistance between the cell parts (electrodes, bipolar plates and current collectors). Typically, fuel cells are assembled using compression pressures of above 8 bar to minimize contact resistance. In comparison, flow batteries use compression pressures less than 1 bar during cell assembly with carbon fibre felt electrodes; hence contact resistance values are relatively high. A number of studies have measured the effect of felt compression on battery performance [4-5], where the felt compression is increased from 0 to 30%, resulting in a decrease in cell resistance and a noticeable improvement in performance. This study builds on previous felt compression work by exploring a much wider range of electrode compression pressures in a VFB system.
    DSpace software (copyright © 2002 - 2019)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.