• Login / Register
    Search 
    •   Home
    • Faculty of Science and Engineering
    • Natural Sciences
    • Search
    •   Home
    • Faculty of Science and Engineering
    • Natural Sciences
    • Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of ChesterRepCommunitiesTitleAuthorsPublication DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsPublication DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    Filter by Category

    Subjects
    air pollution (2)
    atmospheric chemistry (1)atmospheric pollution (1)reactive nitrogen (1)View MoreJournalAtmospheric Chemistry and Physics (1)Geophysical Research Abstracts (1)AuthorsCrowley, John N. (2)
    Lelieveld, Jos (2)
    Phillips, Gavin J. (2)Bourtsoukidis, Efstratios (1)Derstroff, Bettina (1)Drewnick, Frank (1)Fachinger, Johannes (1)Fischer, Horst (1)Hafermann, Sascha (1)Harder, Hartwig (1)View MoreTypesArticle (1)Meetings and Proceedings (1)

    About

    AboutUniversity of Chester

    Statistics

    Display statistics
     

    Search

    Show Advanced FiltersHide Advanced Filters

    Filters

    Now showing items 1-2 of 2

    • List view
    • Grid view
    • Sort Options:
    • Relevance
    • Title Asc
    • Title Desc
    • Issue Date Asc
    • Issue Date Desc
    • Results Per Page:
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100

    • 2CSV
    • 2RefMan
    • 2EndNote
    • 2BibTex
    • Selective Export
    • Select All
    • Help
    Thumbnail

    ClNO2 and nitrate formation via N2O5 uptake to particles: Derivation of N2O5 uptake coefficients from ambient datasets

    Phillips, Gavin J.; Thieser, Jim; Tang, Mingjin; Sobanski, Nicolas; Fachinger, Johannes; Drewnick, Frank; Lelieveld, Jos; Crowley, John N. (Copernicus Publications, 2015-02-25)
    We present estimates of the uptake coefficient of N2O5 using ambient measurements of the trace gases N2O5 and ClNO2 and particle composition and surface area at the Kleiner Feldberg observatory, near Frankfurt, SW Germany, during the PARADE campaign (summer 2011). Three methods used to extract gamma(N2O5) from the datasets were found to be in reasonable agreement, generating values between 0.001 and 0.4. Gamma (N2O5) displayed a significant dependence on relative humidity (RH), the largest values obtained, as expected, at high RH. No significant dependence of gamma(N2O5) on particle organic content or sulphate-to-organic ratio was observed. The variability in gamma(N2O5) is however large, indicating that humidity is not the sole factor determining the uptake coefficient. There is also an indication that the yield of ClNO2 with respect to N2O5 uptake is larger with lower concentrations of PM1 total organics. Our results will be compared to existing uptake coefficients from laboratory studies and those derived from field observations.
    Thumbnail

    Oxidation processes in the eastern Mediterranean atmosphere: evidence from the modelling of HOx measurements over Cyprus

    Mallik, Chinmay; Tomsche, Laura; Bourtsoukidis, Efstratios; Crowley, John N.; Derstroff, Bettina; Fischer, Horst; Hafermann, Sascha; Hueser, Imke; Javed, Umar; Kessel, Stephan; et al. (Copernicus Publications, 2018-07-31)
    The Mediterranean is a climatically sensitive region located at the crossroads of air masses from three continents: Europe, Africa, and Asia. The chemical processing of air masses over this region has implications not only for the air quality but also for the long-range transport of air pollution. To obtain a comprehensive understanding of oxidation processes over the Mediterranean, atmospheric concentrations of the hydroxyl radical (OH) and the hydroperoxyl radical (HO2) were measured during an intensive field campaign (CYprus PHotochemistry EXperiment, CYPHEX-2014) in the northwest of Cyprus in the summer of 2014. Very low local anthropogenic and biogenic emissions around the measurement location provided a vantage point to study the contrasts in atmospheric oxidation pathways under highly processed marine air masses and those influenced by relatively fresh emissions from mainland Europe. The CYPHEX measurements were used to evaluate OH and HO2 simulations using a photochemical box model (CAABA/MECCA) constrained with CYPHEX observations of O3, CO, NOx, hydrocarbons, peroxides, and other major HOx (OH+HO2) sources and sinks in a low-NOx environment (<100pptv of NO). The model simulations for OH agreed to within 10% with in situ OH observations. Model simulations for HO2 agreed to within 17% of the in situ observations. However, the model strongly under-predicted HO2 at high terpene concentrations, this under-prediction reaching up to 38% at the highest terpene levels. Different schemes to improve the agreement between observed and modelled HO2, including changing the rate coefficients for the reactions of terpene-generated peroxy radicals (RO2) with NO and HO2 as well as the autoxidation of terpene-generated RO2 species, are explored in this work. The main source of OH in Cyprus was its primary production from O3 photolysis during the day and HONO photolysis during early morning. Recycling contributed about one-third of the total OH production, and the maximum recycling efficiency was about 0.7. CO, which was the largest OH sink, was also the largest HO2 source. The lowest HOx production and losses occurred when the air masses had higher residence time over the oceans.
    DSpace software (copyright © 2002 - 2019)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.