• Additively Manufactured Graphitic Electrochemical Sensing Platforms

      Foster, Christopher W; El Bardisy, Hadil M; Down, Michael P; Keefe, Edmund M; Smith, Graham C; Banks, Craig E; Manchester Metropolitan University (Foster, El Bardisy, Down, Keefe, Banks), University of Chester (Smith) (Elsevier, 2020-02-01)
      Additive manufacturing (AM)/3D printing technology provides a novel platform for the rapid prototyping of low cost 3D platforms. Herein, we report for the first time, the fabrication, characterisation (physicochemical and electrochemical) and application (electrochemical sensing) of bespoke nanographite (NG)-loaded (25 wt. %) AM printable (via fused deposition modelling) NG/PLA filaments. We have optimised and tailored a variety of NG-loaded filaments and their AM counterparts in order to achieve optimal printability and electrochemical behaviour. Two AM platforms, namely AM macroelectrodes (AMEs) and AM 3D honeycomb (macroporous) structures are benchmarked against a range of redox probes and the simultaneous detection of lead (II) and cadmium (II). This proof-of-concept demonstrates the impact that AM can have within the area of electroanalytical sensors.
    • Avoiding ambient air and light induced degradation in high-efficiency polymer solar cells by the use of hydrogen-doped zinc oxide as electron extraction material

      Polydorou, Ermioni; Sakelis, Elias; Soultati, Anastasia; Kaltzoglou, Andreas; Papadopoulos, Theodoros A.; Briscoe, Joe; Tsikritzis, Dimitris; Fakis, Mihalis; Palilis, Leonidas C.; Kennou, Stella; et al. (Elsevier, 2017-02-24)
      Polymer solar cells have undergone rapid development in recent years. Their limited stability to environmental influence and during illumination, however, still remains a major stumbling block to the commercial application of this technology. Several attempts have been made to address the instability issue, mostly concentrated on the insertion of charge transport interlayers in the device stack. Although zinc oxide (ZnO) is one of the most common electron transport materials in those cells, the presence of defects at the surface and grain boundaries significantly affects the efficiency and stability of the working devices. To address these issues, we herein employ hydrogen-doping of ZnO electron extraction material. It is found that devices based on photoactive layers composed of blends of poly(3-hexylthiophene) (P3HT) with electron acceptors possessing different energy levels, such as [6,6]-phenyl-C70butyric acid methyl ester (PC70BM) or indene-C60 bisadduct (IC60BA) essentially enhanced their photovoltaic performance when using the hydrogen-doped ZnO with maximum power conversion efficiency (PCE) reaching values of 4.62% and 6.65%, respectively, which are much higher than those of the cells with the pristine ZnO (3.08% and 4.51%). Most significantly, the degradation of non-encapsulated solar cells when exposed to ambient or under prolonged illumination is studied and it is found that devices based on un-doped ZnO showed poor environmental stability and significant photo-degradation while those using hydrogen-doped ZnO interlayers exhibited high long-term ambient stability and maintained nearly 80–90% of their initial PCE values after 40 h of 1.5 AM illumination. All mechanisms responsible for this enhanced stability are elucidated and corresponding models are proposed. This work successfully addresses and tackles the instability problem of polymer solar cells and the key findings pave the way for the upscaling of these and, perhaps, of related devices such as perovskite solar cells.
    • Bioinspired bactericidal surfaces with polymer nanocone arrays

      Hazell, Gavin; Fisher, Leanne E.; Murray, Andrew W.; Nobbs, Angela H.; Su, Bo; University of Chester; University of Bristol (Elsevier, 2018-05-28)
      Infections resulting from bacterial biofilm formation on the surface of medical devices are challenging to treat and can cause significant patient morbidity. Recently, it has become apparent that regulation of surface nanotopography can render surfaces bactericidal. In this study, poly(ethylene terephthalate) nanocone arrays are generated through a polystyrene nanosphere-mask colloidal lithographic process. It is shown that modification of the mask diameter leads to a direct modification of centre-to-centre spacing between nanocones. By altering the oxygen plasma etching time it is possible to modify the height, tip width and base diameter of the individual nanocone features. The bactericidal activity of the nanocone arrays was investigated against Escherichia coli and Klebsiella pneumoniae. It is shown that surfaces with the most densely populated nanocone arrays (center-to-center spacing of 200 nm), higher aspect ratios (>3) and tip widths <20 nm kill the highest percentage of bacteria (∼30%).
    • Chemical changes in PCPDTBT:PCBM solar cells using XPS and TOF-SIMS and use of inverted device structure for improving lifetime performance

      Kettle, Jeff; Waters, Huw; Ding, Ziqian; Horie, Masaki; Smith, Graham C.; School of Electronic Engineering University of Bangor (Kettle, Waters, Ding), Department of Chemical Engineering National Tsing Hua University Taiwan (Horie), Department of Natural Sciences University of Chester (Smith) (Elsevier, 2015-06-10)
      Analysis of the degradation routes for poly[(4,4-bis(2-ethylhexyl)-cyclopenta-[2,1-b;3,4-b′]dithiophene)-2,6-diyl-alt-2,1,3-benzothiadiazole-4,7-diyl] (PCPDTBT)-based solar cells under illumination and in the presence of air have been conducted using a combination of X-ray Photoelectron Spectroscopy (XPS), Time-Of-Flight Secondary Ion Mass Spectrometry (TOF-SIMs) and solar cell device data. After ageing, XPS studies show that PCPDTBT appears as an oxygen-containing polymer, with data indicating that a break-up in the aromatic rings, formation of sulphates at the thiophene ring, chain scission in the polymer backbone and also loss of side chains. XPS studies have also been conducted on Phenyl-C71-butyric acid methyl ester (PC71BM) films and show a breakage of the fullerene cage, loss of molecular shape and oxidation of carbon atoms in the fullerene cage and side chains after ageing. XPS studies on active layers blends of PCPDTBT and PCBM also show significant changes in the vertical composition during ageing, with increased enrichment of PCPDTBT observed at the top surface and that the use of a processing additive (ODT) has a negative impact on the morphological stability. Based on these studies, it shown that inverted structures are better suited than non-inverted devices for PCPDTBT:PCBM solar cells. An additional advantage of inverted devices is shown using TOF-SIMS; electrode degradation during ageing experiments leads to migration of indium and tin ions into the active layer in non-inverted devices, but is eliminated for inverted devices.
    • Comment on “Observations of ammonia, nitric acid, and fine particles in a rural gas production region” by Yi Li, Florian M. Schwandnera, H. James Sewell, Angela Zivkovich, Mark Tigges, Suresh Raja, Stephen Holcomb, John V. Molenar, Lincoln Sherman, Cassie Archuleta, Taehyoung Lee and Jeffrey L. Collett Jr. Atmospheric Environment (in press)

      Phillips, Gavin J.; University of Chester (Elsevier, 2014-03)
      Peer reviewed commentary on a research paper. An artefact of the detection of nitric acid (HNO3) by denuder methods is discussed. This artefact arises from the likely reaction of dinitrogen pentoxide (N2O5) on the denuder train resulting in the report of some fraction of N2O5 as HNO3.
    • The effect of irradiation impinging on disparate anchoring configurations of polar-organic molecules adsorbed on bulk and thin-film metal surfaces

      Papadopoulos, Theodoros A.; Metz, Sebastian; Tang, Shu-Jung; University of Chester; Daresbury Laboratory; National Tsing-Hua University (Elsevier, 2019-07-11)
      The behavior of polar metal organic molecules, chloroaluminum phthalocyanine (ClAlPc), upon ultraviolet (UV) irradiation was investigated to evaluate the stability of the adsorption process on the Ag(111) thin film and bulk crystal. Angle-resolved photoelectron spectroscopy (ARPES) was mainly employed to measure the molecular energy states (MES) and vacuum level (VL) shift for 1-ML ClAlPc in the Cl-down configuration. A consistent trend was observed showing that ClAlPc in the Cl-down configuration is energetically more stable on the Ag thin-film surface than on the corresponding surface of the Ag bulk crystal. The intermediate adsorption state in tilted configuration during the irradiation impinging is identified by large positive VL shifts and broad spectra line shapes to infer a flipping mechanism from Cl-down to Cl-up configuration. Strain on the Ag thin films from the underlying mismatched Ge(111) substrate is considered to cause enlarged hollow sites on the Ag(111) thin-films, that anchor the Cl-down configuration more tightly on the thin-film surfaces, as confirmed by density functional theory (DFT) calculations.
    • The electrochemical characterisation of graphite felts

      Smith, Robert E. G.; Davies, Trevor J.; Baynes, Nicholas de B.; Nichols, Richard J.; University of Liverpool ; University of Chester/ACAL Energy Limited ; ACAL Energy Limited ; University of Liverpool (Elsevier, 2015-03-25)
      With the increasing demand for advanced energy storage, redox flow batteries (RFBs) are a rapidly growing market and research area. Carbon fibre based materials like graphite felts (GFs) are commonly used in RFBs as electrodes due to their electrochemical activity, high permeability for liquids, high surface area and relatively low cost. Previous characterisation of GFs has involved flow systems, which can be complicated to replicate and expensive. Using pre-treatment techniques to ensure sufficient wetting, GFs can be used effectively in quiescent electrochemistry. By combining the experimental voltammograms with digital simulations, key properties such as capacitance, electrode kinetics, average pore size and electrochemical surface area can be determined. This allows for the rapid and low cost examination of multiple GFs and pre-treatment methods, providing a useful tool for RFB development. In addition, the GF electrodes used in the study show promising limit of detection values, with initial experiments suggesting these electrodes may have applications in electroanalysis.
    • Enhancement of Wear and Corrosion Resistance of Beta Titanium Alloy by Laser Technology

      Chan, Chi-Wai; Lee, Seunghwan; Smith, Graham C.; Sarri, Gianluca; Ng, Chi-Ho; Sharba, Ahmed; Man, Hau-Chung; Queens University Belfast (Chan, Sharba); Technical University of Denmark (Lee); University of Chester (Smith, Ng); Hong Kong Polytechnic University (Man) (Elsevier, 2016-03-30)
      The relatively high elastic modulus coupled with the presence of toxic vanadium (V) in Ti6Al4V alloy has long been a concern in orthopaedic applications. To solve the problem, a variety of non-toxic and low modulus beta-titanium (beta-Ti) alloys have been developed. Among the beta-Ti alloy family, the quaternary Ti-Nb-Zr-Ta (TZNT) alloys have received the highest attention as a promising replacement for Ti6Al4V due to their lower elastic modulus and outstanding long term stability against corrosion in biological environments. However, the inferior wear resistance of TNZT is still a problem that must be resolved before commercialising in the orthopaedic market. In this work, a newly-developed laser surface treatment technique was employed to improve the surface properties of Ti-35.3Nb-7.3Zr-5.7Ta alloy. The surface microstructure and composition of the laser-treated TNZT surface were examined by grazing incidence x-ray diffraction (GI-XRD) and x-ray photoelectron spectroscopy (XPS). The wear and corrosion resistance were evaluated by pin-on-plate sliding test and anodic polarisation test in Hanks’ solution. The experimental results were compared with the untreated (or base) TNZT material. The research findings showed that the laser surface treatment technique reported in this work can effectively improve the wear and corrosion resistance of TNZT. The enhancement of such surface properties was due to the formation of a smooth and hard layer on the substrate surface. The laser-formed layer was metallurgically bonded to the substrate, and had no concern of coating delamination or peel-off.
    • Enhancing the antibacterial performance of orthopaedic implant materials by fibre laser surface engineering

      Chan, Chi-Wai; Carson, Louise; Smith, Graham C.; Morelli, Alessio; Lee, Seunghwan; Queens University Belfast (Chan, Carson, Morelli); University of Chester (Smith); Technical University of Denmark (Lee) (Elsevier, 2017-05-15)
      Implant failure caused by bacterial infection is extremely difficult to treat and usually requires the removal of the infected components. Despite the severe consequence of bacterial infection, research into bacterial infection of orthopaedic implants is still at an early stage compared to the effort on enhancing osseointegration, wear and corrosion resistance of implant materials. In this study, the effects of laser surface treatment on enhancing the antibacterial properties of commercially pure (CP) Ti (Grade 2), Ti6Al4V (Grade 5) and CoCrMo alloy implant materials were studied and compared for the first time. Laser surface treatment was performed by a continuous wave (CW) fibre laser with a near-infrared wavelength of 1064 nm in a nitrogen-containing environment. Staphylococcus aureus, commonly implicated in infection associated with orthopaedic implants, was used to investigate the antibacterial properties of the laser-treated surfaces. The surface roughness and topography of the laser-treated materials were analysed by a 2D roughness testing and by AFM. The surface morphologies before and after 24 h of bacterial cell culture were captured by SEM, and bacterial viability was determined using live/dead staining. Surface chemistry was analysed by XPS and surface wettability was measured using the sessile drop method. The findings of this study indicated that the laser-treated CP Ti and Ti6Al4V surfaces exhibited a noticeable reduction in bacterial adhesion and possessed a bactericidal effect. Such properties were attributable to the combined effects of reduced hydrophobicity, thicker and stable oxide films and presence of laser-induced nano-features. No similar antibacterial effect was observed in the laser-treated CoCrMo.
    • Fibre laser joining of dissimilar materials: Commercially pure Ti and PET hybrid joint for medical device applications

      Chan, Chi-Wai; Smith, Graham C.; Queen's University Belfast; University of Chester (Elsevier, 2016-04-29)
      Laser transmission joining (LTJ) is growing in importance, and has the potential to become a niche technique for the fabrication of hybrid plastic-metal joints for medical device applications. The possibility of directly joining plastics to metals by LTJ has been demonstrated by a number of recent studies. However, a reliable and quantitative method for defining the contact area between the plastic and metal, facilitating calculation of the mechanical shear stress of the hybrid joints, is still lacking. A new method, based on image analysis using ImageJ, is proposed here to quantify the contact area at the joint interface. The effect of discolouration on the mechanical performance of the hybrid joints is also reported for the first time. Biocompatible polyethylene terephthalate (PET) and commercially pure titanium (Ti) were selected as materials for laser joining using a 200 W CW fibre laser system. The effect of laser power, scanning speed and stand-off distance between the nozzle tip and top surface of the plastic were studied and analysed by Taguchi L9 orthogonal array and ANOVA respectively. The surface morphology, structure and elemental composition on the PET and Ti surfaces after shearing/peeling apart were characterized by SEM, EDX, XRD and XPS.
    • Fibre Laser Nitriding of Titanium and its Alloy in Open Atmosphere for Orthopaedic Implant Applications: Investigations on Surface Quality, Microstructure and Tribological Properties

      Chan, Chi-Wai; Lee, Seunghwan; Smith, Graham C.; Donaghy, Clare L.; Queens University Belfast (Chan, Donaghy), Technical University Denmark (Lee), University of Chester (Smith) (Elsevier, 2016-12-20)
      Laser nitriding is known to be an effective method to improve the surface hardness and wear resistance of titanium and its alloys. However, the process requires a gas chamber and this greatly limits the practicability for treating orthopaedic implants which involve complex-shaped parts or curved surfaces, such as the tapered surface in a femoral stemor the ball-shaped surface in a femoral head. To tackle this problem, a direct laser nitriding process in open atmosphere was performed on commercially pure titanium (grade 2, TiG2) and Ti6Al4V alloy (grade 5, TiG5) using a continuous-wave (CW) fibre laser. The effects of varying process parameters, for instance laser power and nitrogen pressure on the surface quality, namely discolouration were quantified using ImageJ analysis. The optimised process parameters to produce the gold-coloured nitride surfaces were also identified: 40W(laser power), 25mm/s (scanning speed), 1.5mm(standoff distance) and 5 bar (N2 pressure). Particularly, N2 pressure at 5 barwas found to be the threshold above which significant discolouration will occur. The surface morphology, composition, microstructure, micro-hardness, and tribological properties, particularly hydrodynamic size distribution of wear debris, were carefully characterized and compared. The experimental results showed that TiG2 and TiG5 reacted differently with the laser radiation at 1.06 μm wavelength in laser nitriding as evidenced by substantial differences in the microstructure, and surface colour and morphology. Furthermore, both friction andwear properties were strongly affected by the hardness and microstructure of titaniumsamples and direct laser nitriding led to substantial improvements in their wear resistant properties. Between the two types of titanium samples, bare TiG2 showed higher friction forces and wear rates, but this trend was reversed after laser nitriding treatments.
    • Fibre laser treatment of martensitic NiTi alloys for load-bearing implant applications: Effects of surface chemistry on inhibiting Staphylococcus aureus biofilm formation

      Smith, Graham C.; Chan, Chi-Wai; Carson, Louise; Queens University Belfast; University of Chester (Elsevier, 2018-06-15)
      Biofilm infection is one of the main reasons for implant failure. It is extremely difficult to cure due to its high resistance to antibiotic treatments, and can result in substantial healthcare costs. In this study, the important shape memory NiTi alloy, in its martensitic state, was laser-treated using our newly-developed surface modification technique, aiming to tackle the biofilm infection problem. Martensitic NiTi was chosen for investigation because of its potential advantages in terms of (i) lower elastic modulus and (ii) higher damping capacity over its austenitic counterpart, giving rise to a lower risk of stress shielding and maximum stress between bones and load-bearing implants. The surfaces after laser treatment were systemically analysed using a series of surface measurement (i.e. surface roughness and water contact angle) and material characterisation (i.e. SEM-EDX, XRD and XPS) techniques. The antibacterial performance of the laser-treated surfaces was evaluated using the Staphylococcus aureus (or S. aureus) cells in-vitro cultured at 37 oC for 24h. Fluorescence microscopy accompanied by Live/Dead staining was employed to analyse the cell culture results. The surfaces in their as-received states and after polishing were also tested and compared with the laser-treated surfaces in order to gain a deeper insight in how different surface conditions would influence biofilm formation. Our results indicate that the surfaces after laser treatment can mitigate bacterial attachment and biofilm formation effectively. The antibacterial performance was mainly attributable to the laser-formed oxides which brought desirable changes to the surface chemistry of NiTi. The laser-induced changes in surface roughness and topography, on a micrometre scale, only played a minor role in influencing bacterial attachment. The findings of this study demonstrated for the first time that martensitic NiTi with laser treatment could be a promising choice for the next-generation implants given its superior antimicrobial resistance and favourable mechanical properties for loading bearing applications.
    • In vitro mesenchymal stem cell response to a CO2 laser modified polymeric material

      Waugh, David G.; Hussain, Issam; Lawrence, Jonathan; Smith, Graham C.; Toccaceli, Christina; University of Chester; University of Lincoln (Elsevier, 2016-05-16)
      With an ageing world population it is becoming significantly apparent that there is a need to produce implants and platforms to manipulate stem cell growth on a pharmaceutical scale. This is needed to meet the socio-economic demands of many countries worldwide. This paper details one of the first ever studies in to the manipulation of stem cell growth on CO2 laser surface treated nylon 6,6 highlighting its potential as an inexpensive platform to manipulate stem cell growth on a pharmaceutical scale. Through CO2 laser surface treatment discrete changes to the surfaces were made. That is, the surface roughness of the nylon 6,6 was increased by up to 4.3 µm, the contact angle was modulated by up to 5° and the surface oxygen content increased by up to 1 atom%. Following mesenchymal stem cell growth on the laser treated samples, it was identified that CO2 laser surface treatment gave rise to an enhanced response with an increase in viable cell count of up to 60,000 cells/ml when compared to the as-received sample. The effect of surface parameters modified by the CO2 laser surface treatment on the mesenchymal stem cell response is also discussed along with potential trends that could be identified to govern the mesenchymal stem cell response.
    • In-depth synthetic, physicochemical and in vitro biological investigation of a new ternary V(IV) antioxidant material based on curcumin.

      Papadopoulos, Theodoros A.; Smith, Graham C.; Halevas, Eleftherios; Salifoglou, Athanasios; Swanson, Claudia H.; Hatzidimitriou, Antonios; Katsipis, George; Pantazaki, Anastasia; Sanakis, I.; Mitrikas, George; et al. (Elsevier, 2018-11-06)
      Curcumin is a natural product with a broad spectrum of beneficial properties relating to pharmaceutical applications, extending from traditional remedies to modern cosmetics. The biological activity of such pigments, however, is limited by their solubility and bioavailability, thereby necessitating new ways of achieving optimal tissue cellular response and efficacy as drugs. Metal ion complexation provides a significant route toward improvement of curcumin stability and biological activity, with vanadium being a representative such metal ion, amply encountered in biological systems and exhibiting exogenous bioactivity through potential pharmaceuticals. Driven by the need to optimally increase curcumin bioavailability and bioactivity through complexation, synthetic efforts were launched to seek out stable species, ultimately leading to the synthesis and isolation of a new ternary V(IV)-curcumin-(2,2’-bipyridine) complex. Physicochemical characterization (elemental analysis, FT-IR, Thermogravimetry (TGA), UV-Visible, NMR, ESI-MS, Fluorescence, X-rays) portrayed the solid-state and solution properties of the ternary complex. Pulsed-EPR spectroscopy, in frozen solutions, suggested the presence of two species, cis- and trans-conformers. Density Functional Theory (DFT) calculations revealed the salient features and energetics of the two conformers, thereby complementing EPR spectroscopy. The well-described profile of the vanadium species led to its in vitro biological investigation involving toxicity, cell metabolism inhibition in S. cerevisiae cultures, Reactive Oxygen Species (ROS)-suppressing capacity, lipid peroxidation, and plasmid DNA degradation. A multitude of bio-assays and methodologies, in comparison to free curcumin, showed that it exhibits its antioxidant potential in a concentration-dependent fashion, thereby formulating a bioreactivity profile supporting development of new efficient vanado-pharmaceuticals, targeting (extra)intra-cellular processes under (patho)physiological conditions.
    • Investigation of a chemically regenerative redox cathode polymer electrolyte fuel cell using a phosphomolybdovanadate polyoxoanion catholyte

      Gunn, Natasha; Ward, David B.; Menelaou, Constantinos; Herbert, Matthew A.; Davies, Trevor J.; University of Chester (Elsevier, 2017-03-06)
      Chemically regenerative redox cathode (CRRC) polymer electrolyte fuel cells (PEFCs), where the direct reduction of oxygen is replaced by an in-direct mechanism occurring outside of the cell, are attractive to study as they offer a solution to the cost and durability problems faced by conventional PEFCs. This study reports the first detailed characterization of a high performance complete CRRC PEFC system, where catholyte is circulated between the cathode side of the cell and an air-liquid oxidation reactor called the “regenerator”. The catholyte is an aqueous solution of phosphomolybdovanadate polyoxoanion and is assessed in terms of its performance within both a small single cell and corresponding regenerator over a range of redox states. Two methods for determining regeneration rate are proposed and explored. Expressing the regeneration rate as a “chemical” current is suggested as a useful means of measuring re-oxidation rate with respect to the cell. The analysis highlights the present limitations to the technology and provides an indication of the maximum power density achievable, which is highly competitive with conventional PEFC systems.
    • Magnetic cationic liposomal nanocarriers for the efficient drug delivery of a curcumin-based vanadium complex with anticancer potential

      Halevesa, Eleftherios; Mavroidi, Barbara; Moschona, Alexandra; Hadjispyrou, Spyros; Salifoglou, Athanasios; Pelecanou, Maria; Litsardakis, George; Pantazaki, Anastasia; Swanson, Claudia H.; Smith, Graham C.; et al. (Elsevier, 2019-07-15)
      In this work novel magnetic cationic liposomal nanoformulations were synthesized for the encapsulation of a crystallographically defined ternary V(IV)-curcumin-bipyridine (VCur) complex with proven bioactivity, as potential anticancer agents. The liposomal vesicles were produced via the thin film hydration method employing N-[1-(2,3-dioleoyloxy)propyl]-N,N,N-trimethylammonium (DOTAP) and egg phosphatidylcholine lipids and were magnetized through the addition of citric acid surface-modified monodispersed magnetite colloidal magnetic nanoparticles. The obtained nanoformulations were evaluated for their structural and textural properties and shown to have exceptional stability and enhanced solubility in physiological media, demonstrated by the entrapment efficiency and loading capacity results and the in vitro release studies of their cargo. Furthermore, the generated liposomal formulations preserved the superparamagnetic behavior of the employed magnetic core maintaining the physicochemical and morphological requirements for targeted drug delivery applications. The novel nanomaterials were further biologically evaluated for their DNA interaction potential and were found to act as intercalators. The findings suggest that the positively charged magnetic liposomal nanoformulations can generate increased concentration of their cargo at the DNA site, offering a further dimension in the importance of cationic liposomes as nanocarriers of hydrophobic anticancer metal ion complexes for the development of new multifunctional pharmaceutical nanomaterials with enhanced bioavailability and targeted antitumor activity.
    • Magnetically Responsive Materials based on Polymeric Ionic Liquids and Graphene Oxide for Water Clean-up

      Hazell, Gavin; Hinojosa-Navarro, Miguel; McCoy, Thomas; Tabor, Rico; Eastoe, Julian; University of Chester, University of Bristol, Monash University (Elsevier, 2015-11-14)
      Hypothesis Owing to attractive interactions between negatively charged graphene oxide (GO) and a paramagnetic cationic polyelectrolyte (polyallydimethylammonium chloride with a FeCl4− counterion (Fe-polyDADMAC) it should be possible to generate magnetic materials. The benefit of using charge-based adsorption is that the need to form covalently linked magnetic materials is offset, which is expected to significantly reduce the time, energy and cost to make such responsive materials. These systems could have a wide use and application in water treatment. Experiments Non-covalent magnetic materials were formed through the mixing of Fe-pDADMAC and GO. A systematic study was conducted by varying polymer concentration at a fixed GO concentration. UV–Vis was used to confirm and quantify polymer adsorption onto GO sheets. The potential uses of the systems for water purification were demonstrated. Findings Fe-polyDADMAC adsorbs to the surface of GO and induces flocculation. Low concentrations of the polymer (<9 mmol/L) favour flocculation, whereas higher concentrations (>20 mmol/L) induce restabilization. Difficult-to-recover gold nanoparticles can be separated from suspensions as well as the pollutant antibiotic tetracycline. Both harmful materials can be magnetically recovered from the dispersions. This system therefore has economical and practical applications in decontamination and water treatment.
    • Modified magnetic core-shell mesoporous silica nano-formulations with encapsulated quercetin exhibit anti-amyloid and antioxidant activity

      Halevas, Eleftherios; Mavroidi, Barbara; Nday, Christiane; Tang, Jianhua; Smith, Graham; Boukos, Nikos; Litsardakis, George; Pelecanou, Maria; Salifoglou, Athanasios; NCSR "Demokritos" Athens (Halevas, Mavroidi, Pelecanou), University of Chester (Tang, Smith), Aristotle University of Thessalonika (Litsardakis, Nday) (Elsevier, 2020-10-06)
      Targeted tissue drug delivery is a challenge in contemporary nanotechnologically driven therapeutic approaches, with the interplay interactions between nanohost and encapsulated drug shaping the ultimate properties of transport, release and efficacy of the drug at its destination. Prompted by the need to pursue the synthesis of such hybrid systems, a family of modified magnetic core-shell mesoporous silica nano-formulations was synthesized with encapsulated quercetin, a natural flavonoid with proven bioactivity. The new nanocarriers were produced via the sol-gel process, using tetraethoxysilane as a precursor and bearing a magnetic core of surface-modified monodispersed magnetite colloidal superparamagnetic nanoparticles, subsequently surface-modified with polyethylene glycol 3000 (PEG3k). The arising nano-formulations were evaluated for their textural and structural properties, exhibiting enhanced solubility and stability in physiological media, as evidenced by the loading capacity, entrapment efficiency results and in vitro release studies of their load. Guided by the increased bioavailability of quercetin in its encapsulated form, further evaluation of the biological activity of the magnetic as well as non-magnetic core-shell nanoparticles, pertaining to their anti-amyloid and antioxidant potential, revealed interference with the aggregation of β-amyloid peptide (Aβ) in Alzheimer’s disease, reduction of Aβ cellular toxicity and minimization of Aβ-induced Reactive Oxygen Species (ROS) generation. The data indicate that the biological properties of released quercetin are maintained in the presence of the host nanocarriers. Collectively, the findings suggest that the emerging hybrid nano-formulations can function as efficient nanocarriers of hydrophobic natural flavonoids in the development of multifunctional nanomaterials toward therapeutic applications.
    • MoS2-graphene-CuNi2S4 nanocomposite an efficient electrocatalyst for the hydrogen evolution reaction

      Adarakatti, Prashanth Shivappa; Mahanthappa, Mallappa; Hughes, Jack; Rowley-Neale, Samuel; Smith, Graham; S, Ashoka; Banks, Craig; Manchester Metropolitan University, University of Chester, Bengaluru
      We present a facile methodology for the synthesis of a novel 2D-MoS2, graphene and CuNi2S4 (MoS2-g-CuNi2S4) nanocomposite that displays highly efficient electrocatalytic activity towards the production of hydrogen. The intrinsic hydrogen evolution reaction (HER) activity of MoS2 nanosheets was significantly enhanced by increasing the affinity of the active edge sites towards Hþ adsorption using transition metal (Cu and Ni2) dopants, whilst also increasing the edge sites exposure by anchoring them to a graphene frame- work. Detailed XPS analysis reveals a higher percentage of surface exposed S at 17.04%, of which 48.83% is metal bonded S (sulfide). The resultant MoS2-g-CuNi2S4 nanocomposites are immobilized upon screen-printed electrodes (SPEs) and exhibit a HER onset potential and Tafel slope value of -0.05 V (vs. RHE) and 29.3 mV dec-1, respectively. These values are close to that of the polycrystalline Pt electrode (near zero potential (vs. RHE) and 21.0 mV dec-1, respectively) and enhanced over a bare/unmodified SPE (-0.43 V (vs. RHE) and 149.1 mV dec-1, respectively). Given the efficient, HER activity displayed by the novel MoS2-g-CuNi2S4/SPE electrochemical platform and the comparatively low associated cost of production for this nanocomposite, it has potential to be a cost-effective alternative to Pt within electrolyser technologies.
    • A novel ‘bottom-up’ synthesis of few- and multi-layer graphene platelets with partial oxidation via cavitation

      Price, Richard J.; Ladislaus, Paul I.; Smith, Graham C.; Davies, Trevor J.; University of Chester (Price, Davies, Smith), Thomas Swan Ltd (Ladislaus) (Elsevier, 2019-03-28)
      The transient cavitation of diaromatic components such as 1-methylnaphthalene has been used to produce graphene platelets in a ‘bottom-up’ synthesis via the high temperature (>5000 K) conditions that are generated inside collapsing bubbles. Acoustic cavitation produced yields of 5.7×10−11 kgJ−1 at a production rate of 2.2×10−9 kgs−1. This can be improved by generating cavitation hydrodynamically, thus making commercial scale production viable. Hydrodynamic cavitation produced platelets with larger lateral dimensions (≥2 μm) than those formed by acoustic cavitation (10–200 nm). The partially oxidised nature of the platelets enables their covalent chemical functionalisation, which was achieved by combining suitable molecules in the reaction medium to affect a one-pot formation and functionalisation of graphene