• In-depth synthetic, physicochemical and in vitro biological investigation of a new ternary V(IV) antioxidant material based on curcumin.

      Papadopoulos, Theodoros; Smith, Graham; Halevas, Eleftherios; Salifoglou, Athanasios; Swanson, C. H.; Hatzidimitriou, A.; Katsipis, G.; Pantazaki, A.; Sanakis, I.; Mitrikas, G.; Ypsilantis, K.; Litsardakis, G.; University of Chester; Aristotle University (Elsevier, 2018-11-06)
      Curcumin is a natural product with a broad spectrum of beneficial properties relating to pharmaceutical applications, extending from traditional remedies to modern cosmetics. The biological activity of such pigments, however, is limited by their solubility and bioavailability, thereby necessitating new ways of achieving optimal tissue cellular response and efficacy as drugs. Metal ion complexation provides a significant route toward improvement of curcumin stability and biological activity, with vanadium being a representative such metal ion, amply encountered in biological systems and exhibiting exogenous bioactivity through potential pharmaceuticals. Driven by the need to optimally increase curcumin bioavailability and bioactivity through complexation, synthetic efforts were launched to seek out stable species, ultimately leading to the synthesis and isolation of a new ternary V(IV)-curcumin-(2,2’-bipyridine) complex. Physicochemical characterization (elemental analysis, FT-IR, Thermogravimetry (TGA), UV-Visible, NMR, ESI-MS, Fluorescence, X-rays) portrayed the solid-state and solution properties of the ternary complex. Pulsed-EPR spectroscopy, in frozen solutions, suggested the presence of two species, cis- and trans-conformers. Density Functional Theory (DFT) calculations revealed the salient features and energetics of the two conformers, thereby complementing EPR spectroscopy. The well-described profile of the vanadium species led to its in vitro biological investigation involving toxicity, cell metabolism inhibition in S. cerevisiae cultures, Reactive Oxygen Species (ROS)-suppressing capacity, lipid peroxidation, and plasmid DNA degradation. A multitude of bio-assays and methodologies, in comparison to free curcumin, showed that it exhibits its antioxidant potential in a concentration-dependent fashion, thereby formulating a bioreactivity profile supporting development of new efficient vanado-pharmaceuticals, targeting (extra)intra-cellular processes under (patho)physiological conditions.
    • Insights into HOx and ROx chemistry in the boreal forest via measurement of peroxyacetic acid, peroxyacetic nitric anhydride (PAN) and hydrogen peroxide

      Crowley, John; Pouvesle, Nicolas; Phillips, Gavin J.; Axinte, Raoul; Fischer, Horst; Petaja, Tuukka; Noelscher, Anke; Williams, Jonathan; Hens, Korbinian; Harder, Hartwig; Martinez-Harder, Monica; Novelli, Anna; Kubistin, Dagmar; Bohn, Birger; Lelieveld, Jos; Max Planck Institute for Chemistry; Forschungzentrum Juelich; University of Chester (European Geosciences Union, 2018-09-21)
      Unlike many oxidised atmospheric trace gases, which have numerous production pathways, peroxyacetic acid (PAA) and PAN are formed almost exclusively in gas-phase reactions involving the hydroperoxy radical (HO2), the acetyl peroxy radical (CH3C(O)O2) and NO2 and are not believed to be directly emitted in significant amounts by vegetation. As the self-reaction of HO2 is the main photochemical route to hydrogen peroxide (H2O2), simultaneous observation of PAA, PAN and H2O2 can provide insight into the HO2 budget. We present an analysis of observations taken during a summertime campaign in a boreal forest that, in addition to natural conditions, was temporarily impacted by two biomass-burning plumes. The observations were analysed using an expression based on a steady-state assumption using relative PAA-to-PAN mixing ratios to derive HO2 concentrations. The steady-state approach generated HO2 concentrations that were generally in reasonable agreement with measurements but sometimes overestimated those observed by factors of 2 or more. We also used a chemically simple, constrained box model to analyse the formation and reaction of radicals that define the observed mixing ratios of PAA and H2O2. After nudging the simulation towards observations by adding extra, photochemical sources of HO2 and CH3C(O)O2, the box model replicated the observations of PAA, H2O2, ROOH and OH throughout the campaign, including the biomass-burning-influenced episodes during which significantly higher levels of many oxidized trace gases were observed. A dominant fraction of CH3O2 radical generation was found to arise via reactions of the CH3C(O)O2 radical. The model indicates that organic peroxy radicals were present at night in high concentrations that sometimes exceeded those predicted for daytime, and initially divergent measured and modelled HO2 concentrations and daily concentration profiles are reconciled when organic peroxy radicals are detected (as HO2) at an efficiency of 35%. Organic peroxy radicals are found to play an important role in the recycling of OH radicals subsequent to their loss via reactions with volatile organic compounds.
    • Oxidation processes in the eastern Mediterranean atmosphere: evidence from the modelling of HOx measurements over Cyprus

      Mallik, Chinmay; Tomsche, Laura; Bourtsoukidis, Efstratios; Crowley, John; Derstroff, Bettina; Fischer, Horst; Haferman, Sascha; Hueser, Imke; Javed, Umar; Kessel, Stephan; Lelieveld, Jos; Martinez, Monica; Meusel, Hannah; Novelli, Anna; Phillips, Gavin J.; Pozzer, Andrea; Reiffs, Andreas; Sander, Rolf; Taraborrelli, Domenico; Sauvage, Carina; Schuladen, Jan; Su, Hang; Williams, Jonathan; Harder, Hartwig; Max Planck Institute for Chemistry; Cyprus Institute; Forschungzentrum Juelich; University of Chester (Copernicus Publications, 2018-07-31)
      The Mediterranean is a climatically sensitive region located at the crossroads of air masses from three continents: Europe, Africa, and Asia. The chemical processing of air masses over this region has implications not only for the air quality but also for the long-range transport of air pollution. To obtain a comprehensive understanding of oxidation processes over the Mediterranean, atmospheric concentrations of the hydroxyl radical (OH) and the hydroperoxyl radical (HO2) were measured during an intensive field campaign (CYprus PHotochemistry EXperiment, CYPHEX-2014) in the northwest of Cyprus in the summer of 2014. Very low local anthropogenic and biogenic emissions around the measurement location provided a vantage point to study the contrasts in atmospheric oxidation pathways under highly processed marine air masses and those influenced by relatively fresh emissions from mainland Europe. The CYPHEX measurements were used to evaluate OH and HO2 simulations using a photochemical box model (CAABA/MECCA) constrained with CYPHEX observations of O3, CO, NOx, hydrocarbons, peroxides, and other major HOx (OH+HO2) sources and sinks in a low-NOx environment (<100pptv of NO). The model simulations for OH agreed to within 10% with in situ OH observations. Model simulations for HO2 agreed to within 17% of the in situ observations. However, the model strongly under-predicted HO2 at high terpene concentrations, this under-prediction reaching up to 38% at the highest terpene levels. Different schemes to improve the agreement between observed and modelled HO2, including changing the rate coefficients for the reactions of terpene-generated peroxy radicals (RO2) with NO and HO2 as well as the autoxidation of terpene-generated RO2 species, are explored in this work. The main source of OH in Cyprus was its primary production from O3 photolysis during the day and HONO photolysis during early morning. Recycling contributed about one-third of the total OH production, and the maximum recycling efficiency was about 0.7. CO, which was the largest OH sink, was also the largest HO2 source. The lowest HOx production and losses occurred when the air masses had higher residence time over the oceans.
    • Magnetron Sputter-Coated Nanoparticle MoS2 Supported on Nanocarbon: A Highly Efficient Electrocatalyst toward the Hydrogen Evolution Reaction

      Rowley-Neale, Samuel; Ratova, Marina; Fugita, Lucas; Smith, Graham; Gaffar, Amer; Kulczyk-Malecka, Justyna; Kelly, Peter; Banks, Craig; Manchester Metropolitan niversity (Rowley-Neale, Ratova, Gaffar, Kulczyk-Malecka, Kelly, Banks), University of Chester (Smith), University Soa Paula (Fugita) (American Chemical Society, 2018-07-03)
      The design and fabrication of inexpensive highly efficient electrocatalysts for the production of hydrogen via the hydrogen evolution reaction (HER) underpin a plethora of emerging clean energy technologies. Herein, we report the fabrication of highly efficient electrocatalysts for the HER based on magnetron-sputtered MoS2 onto a nanocarbon support, termed MoS2/C. Magnetron sputtering time is explored as a function of its physiochemical composition and HER performance; increased sputtering times give rise to materials with differing compositions, i.e., Mo4+ to Mo6+ and associated S anions (sulfide, elemental, and sulfate), and improved HER outputs. An optimized sputtering time of 45 min was used to fabricate the MoS2/C material. This gave rise to an optimal HER performance with regard to its HER onset potential, achievable current, and Tafel value, which were −0.44 (vs saturated calomel electrode (SCE)), −1.45 mV s−1, and 43 mV dec−1, respectively, which has the highest composition of Mo4+ and sulfide (MoS2). Electrochemical testing toward the HER via drop casting MoS2/C upon screen-printed electrodes (SPEs) to electrically wire the nanomaterial is found to be mass coverage dependent, where the current density increases up to a critical mass (ca. 50 μg cm−2), after which a plateau is observed. To allow for a translation of the bespoke fabricated MoS2/C from laboratory to new industrial applications, MoS2/C was incorporated into the bulk ink utilized in the fabrication of SPEs (denoted as MoS2/C-SPE), thus allowing for improved electrical wiring to the MoS2/C and resulting in the production of scalable and reproducible electrocatalytic platforms. The MoS2/C-SPEs displayed far greater HER catalysis with a 450 mV reduction in the HER onset potential and a 1.70 mA cm−2 increase in the achievable current density (recorded at −0.75 V (vs SCE)), compared to a bare/unmodified graphitic SPE. The approach of using magnetron sputtering to modify carbon with MoS2 facilitates the production of mass-producible, stable, and effective electrode materials for possible use in electrolyzers, which are cost competitive to Pt and mitigate the need to use time-consuming and low-yield exfoliation techniques typically used to fabricate pristine MoS2.
    • Fibre laser treatment of martensitic NiTi alloys for load-bearing implant applications: Effects of surface chemistry on inhibiting Staphylococcus aureus biofilm formation

      Smith, Graham C.; Chan, Chi-Wai; Carson, Louise; Queens University Belfast; University of Chester (Elsevier, 2018-06-15)
      Biofilm infection is one of the main reasons for implant failure. It is extremely difficult to cure due to its high resistance to antibiotic treatments, and can result in substantial healthcare costs. In this study, the important shape memory NiTi alloy, in its martensitic state, was laser-treated using our newly-developed surface modification technique, aiming to tackle the biofilm infection problem. Martensitic NiTi was chosen for investigation because of its potential advantages in terms of (i) lower elastic modulus and (ii) higher damping capacity over its austenitic counterpart, giving rise to a lower risk of stress shielding and maximum stress between bones and load-bearing implants. The surfaces after laser treatment were systemically analysed using a series of surface measurement (i.e. surface roughness and water contact angle) and material characterisation (i.e. SEM-EDX, XRD and XPS) techniques. The antibacterial performance of the laser-treated surfaces was evaluated using the Staphylococcus aureus (or S. aureus) cells in-vitro cultured at 37 oC for 24h. Fluorescence microscopy accompanied by Live/Dead staining was employed to analyse the cell culture results. The surfaces in their as-received states and after polishing were also tested and compared with the laser-treated surfaces in order to gain a deeper insight in how different surface conditions would influence biofilm formation. Our results indicate that the surfaces after laser treatment can mitigate bacterial attachment and biofilm formation effectively. The antibacterial performance was mainly attributable to the laser-formed oxides which brought desirable changes to the surface chemistry of NiTi. The laser-induced changes in surface roughness and topography, on a micrometre scale, only played a minor role in influencing bacterial attachment. The findings of this study demonstrated for the first time that martensitic NiTi with laser treatment could be a promising choice for the next-generation implants given its superior antimicrobial resistance and favourable mechanical properties for loading bearing applications.
    • Bioinspired bactericidal surfaces with polymer nanocone arrays

      Hazell, Gavin; Fisher, Leanne E.; Murray, W. Andrew; Nobbs, Angela H.; Su, Bo; University of Chester; University of Bristol (Elsevier, 2018-05-28)
      Infections resulting from bacterial biofilm formation on the surface of medical devices are challenging to treat and can cause significant patient morbidity. Recently, it has become apparent that regulation of surface nanotopography can render surfaces bactericidal. In this study, poly(ethylene terephthalate) nanocone arrays are generated through a polystyrene nanosphere-mask colloidal lithographic process. It is shown that modification of the mask diameter leads to a direct modification of centre-to-centre spacing between nanocones. By altering the oxygen plasma etching time it is possible to modify the height, tip width and base diameter of the individual nanocone features. The bactericidal activity of the nanocone arrays was investigated against Escherichia coli and Klebsiella pneumoniae. It is shown that surfaces with the most densely populated nanocone arrays (center-to-center spacing of 200 nm), higher aspect ratios (>3) and tip widths <20 nm kill the highest percentage of bacteria (∼30%).
    • Gastrointestinal Stents: Materials and Designs

      Black, Steven J.; Edwards, Derek W.; Smith, Graham C.; Laasch, Hans-Ulrich; MDECON Ltd.; The Christie NHS Foundation Trust; University of Chester (Thieme Publishing, 2018-05-09)
      Over the last 25 years stents have developed into an established way of restoring luminal patency throughout the gastrointestinal tract. Materials used as well as the construction of these devices have become more and more sophisticated in order to comply better with the complex environment they are inserted. The requirements vary greatly from organ to organ and stent behavior differs significantly between stent constructions. However this is not necessarily understood by many operators, as the choice of devices is now vast and in many cases decisions are made on availability and cost. An increasing challenge in malignant conditions is the improving survival of incurable patients, which now exceeds the traditional life expectancy of a stent by a factor of 2 to 3. Consequently more patients experience failure of their stent and require repeat interventions. This has a poor impact on patients’ quality of life and potentially on their survival. Re-intervention is often more difficult, carries the risk of additional complications and presents an additional economic burden to the health systems. This article illustrates current stent designs, their different behavior and their limitations.
    • Effect of Temperature and Catholyte Concentration on the Performance of a Chemically Regenerative Fuel Cell POM-based catholytes for platinum-free polymer electrolyte fuel cells

      Ward, David B.; Davies, Trevor J.; University of Chester (JOHNSON MATTHEY, plc, 2018-04-01)
      Chemically regenerative redox cathode (CRRC) polymer electrolyte fuel cells (PEFCs) are attracting more interest as a platinum-free PEFC technology. These fuel cells utilise a liquid catalyst or catholyte, to perform the indirect reduction of oxygen, eliminating the major degradation mechanisms that plague PEFC durability. A key component of a CRRC PEFC system is the catholyte. This article reports a thorough study of the effect of catholyte concentration and temperature on CRRC PEFC system performance for H7PV4Mo8O40 and Na4H3PV4Mo8O40, two promising polyoxometalate (POM)-based catholytes. The results suggest 80ºC and a catholyte concentration of 0.3 M provide the optimum performance for both H7PV4Mo8O40 and Na4H3PV4Mo8O40 (for ambient pressure operation).
    • Studies of black silicon and black diamond as materials for antibacterial surfaces

      Hazell, Gavin; May, P. W.; Taylor, P.; Nobbs, A. H. N.; Su, B.; University of Bristol; Oxford Instruments Plasma Technology (Royal Society of Chemistry, 2018-03-27)
      ‘Black silicon’ (bSi) samples with surfaces covered in nanoneedles of varying length, areal density and sharpness, have been fabricated using a plasma etching process. These nanostructures were then coated with a conformal uniform layer of diamond using hot filament chemical vapour deposition to produce ‘black diamond’ (bD) surfaces. The effectiveness of these bSi and bD surfaces in killing Gram-negative (E. coli) and Gram-positive (S. gordonii) bacteria was investigated by culturing the bacteria on the surfaces for a set time and then measuring the live-to-dead ratio. All the nanostructured surfaces killed E. coli at a significantly higher rate than the respective flat Si or diamond control samples. The length of the needles was found to be less important than their separation, i.e. areal density. This is consistent with a model for mechanical bacteria death based on the stretching and disruption of the cell membrane, enhanced by the cells motility on the surfaces. In contrast, S. gordonii were unaffected by the nanostructured surfaces, possibly due to their smaller size, thicker cell membrane and/or their lack of motility.
    • A preliminary study to enhance the tribological performance of CoCrMo alloy by laser remelting for articular joint implant applications

      Chan, Chi-Wai; Smith, Graham C.; Lee, Seunghwan; Queens University Belfast; University of Chester; Technical University Denmark (MDPI, 2018-03-02)
      CoCrMo alloy has long been used as a pairing femoral head material for articular joint implant applications because of its biocompatibility and reliable tribological performance. However, friction and wear issues are still present for CoCrMo (metal)/CoCrMo (metal) or CoCrMo (metal)/ultrahigh molecular weight polyethylene (UHMWPE) (plastic) pairs in clinical observations. The particulate wear debris generated from the worn surfaces of CoCrMo or UHMWPE can pose a severe threat to human tissues, eventually resulting in the failure of implants and the need for revision surgeries. As a result, a further improvement in tribological properties of this alloy is still needed, and it is of great interest to both the implant manufacturers and clinical surgeons. In this study, the surface of CoCrMo alloy was laser-treated by a fibre laser system in an open-air condition (i.e., no gas chamber required). The CoCrMo surfaces before and after laser remelting were analysed and characterised by a range of mechanical tests (i.e., surface roughness measurement and Vickers micro-hardness test) and microstructural analysis (i.e., XRD phase detection). The tribological properties were assessed by pin-on-disk tribometry and dynamic light scattering (DLS). Our results indicate that the laser-treated surfaces demonstrated a friction-reducing effect for all the tribopairs (i.e., CoCrMo against CoCrMo and CoCrMo against UHHMWPE) and enhanced wear resistance for the CoCrMo/CoCrMo pair. Such beneficial effects are chiefly attributable to the presence of the laser-formed hard coating on the surface. Laser remelting possesses several competitive advantages of being a clean, non-contact, fast, highly accurate and automated process compared to other surface coating methods. The promising results of this study point to the possibility that laser remelting can be a practical and effective surface modification technique to further improve the tribological performance of CoCr-based orthopaedic implants.
    • Using sub-micron silver-nanoparticle based films to counter biofilm formation by Gram-negative bacteria

      Gillett, Alice R.; Baxter, S. N.; Hodgson, Simon D.; Smith, Graham C.; Thomas, P. J.; University of Chester; Bangor University (Elsevier, 2018-02-16)
      Composite films comprised of silver nanoparticles (AgNPs) grown using a low-cost straightforward chemical bath based method have been deposited on glass microscope slides to investigate their potential as a sacrificial antibacterial coating. The as-deposited films have been characterised using scanning electron microscopy (SEM) and optical profilometry. These suggested that the films were relatively uniform in coverage. Chemical composition of the AgNP films has been studied by using x-ray photoelectron spectroscopy (XPS). The XPS analysis indicated that the Ag was in a metallic form able to sustain plasmon behaviour, and that low levels of residual nanoparticle precursors were present. Particle size was characterised using transmission electron microscopy (TEM) which showed an average particle size of 10.6 nm. The effectiveness of the films as an antibacterial coating was tested against Escherichia coli. The AgNP film was determined to be effective in the killing of E.coli cells over a 24 hour period when compared to equivalent samples that contained no silver. Of particular note was that only minimal bacterial growth was detected over the first 12 hours of testing, up to 78.6 times less than the control samples, suggesting the film is very efficient at slowing initial biofilm formation. The use of AgNP based films that have been synthesised using a novel low-cost, low-temperature and highly upscalable method is demonstrated as a promising solution for the deployment of silver as an effective sacrificial antimicrobial coating to counter the formation of potentially hazardous Gram negative biofilms.
    • A Silanol-Functionalized Polyoxometalate with Excellent Electron Transfer Mediating Behavior to ZnO and TiO 2 Cathode Interlayers for Highly Efficient and Extremely Stable Polymer Solar Cells

      Tountas, Marinos; Topal, Yasemin; Verykios, Apostolos; Soultati, Anastasia; Kaltzoglou, Andreas; Papadopoulos, Theodoros A.; Auras, Florian; Seintis, Kostas; Fakis, Mihalis; Palilis, Leonidas C.; Tsikritzis, Dimitris; Kennou, Stella; Fakharuddin, Azhar; Schmidt-Mende, Lukas; Gardelis, Spyros; Kus, Mahmut; Falaras, Polycarpos; Davazoglou, Dimitris; Argitis, Panagiotis; Vasilopoulou, Maria; National Centre for Scientific Research “Demokritos"; University of Athens; Pamukkale University Cal Vocational High School; University of Patras; University of Chester; University of Cambridge; University of Konstanz; Selcuk University (Royal Society of Chemistry, 2017-12-21)
      Combining high efficiency and long lifetime under ambient conditions still poses a major challenge towards commercialization of polymer solar cells. Here we report a facile strategy that can simultaneously enhance the efficiency and temporal stability of inverted photovoltaic architectures. Inclusion of a silanol-functionalized organic–inorganic hybrid polyoxometalate derived from a PW9O34 lacunary phosphotungstate anion, namely (nBu4N)3[PW9O34(tBuSiOH)3], significantly increases the effectiveness of the electron collecting interface, which consists of a metal oxide such as titanium dioxide or zinc oxide, and leads to a high efficiency of 6.51% for single-junction structures based on poly(3-hexylthiophene):indene-C60 bisadduct (P3HT:IC60BA) blends. The above favourable outcome stems from a large decrease in the work function, an effective surface passivation and a decrease in the surface energy of metal oxides which synergistically result in the outstanding electron transfer mediating capability of the functionalized polyoxometalate. In addition, the insertion of a silanol-functionalized polyoxometalate layer significantly enhances the ambient stability of unencapsulated devices which retain nearly 90% of their original efficiencies (T90) after 1000 hours.
    • Performance Comparison of Protonic and Sodium Phosphomolybdovanadate Polyoxoanion Catholytes Within a Chemically Regenerative Redox Cathode Polymer Electrolyte Fuel Cell

      Ward, David B.; Gunn, Natasha L.O.; Uwigena, Nadine; Davies, Trevor J.; University of Chester (Elsevier, 2017-11-23)
      The direct reduction of oxygen in conventional polymer electrolyte fuel cells (PEFCs) is seen by many researchers as a key challenge in PEFC development. Chemically regenerative redox cathode (CRRC) polymer electrolyte fuel cells offer an alternative approach via the indirect reduction of oxygen, improving durability and reducing cost. These systems substitute gaseous oxygen for a liquid catalyst that is reduced at the cathode then oxidised in a regeneration vessel via air bubbling. A key component of a CRRC system is the liquid catalyst or catholyte. To date, phosphomolybdovanadium polyoxometalates with empirical formula H3+nPVnMo12-nO40 have shown the most promise for CRRC PEFC systems. In this work, four catholyte formulations are studied and compared against each other. The catholytes vary in vanadium content, pH and counter ion, with empirical formulas H6PV3Mo9O40, H7PV4Mo8O40, Na3H3PV3Mo9O40 and Na4H3PV4Mo8O40. Thermodynamic properties, cell performance and regeneration rates are measured, generating new insights into how formulation chemistry affects the components of a CRRC system. The results include the best CRRC PEFC performance reported to date, with noticeable advantages over conventional PEFCs. The optimum catholyte formulation is then determined via steady state tests, the results of which will guide further optimization of the catholyte formulation.
    • Graphene oxide electrochemistry: the electrochemistry of graphene oxide modified electrodes reveals coverage dependent beneficial electrocatalysis

      Brownson, Dale A. C.; Smith, Graham C.; Banks, Craig E.; University of Chester; Manchester Metropolitan University (The Royal Society, 2017-11-15)
      The modification of electrode surfaces is widely implemented in order to try and improve electron transfer kinetics and surface interactions, most recently using graphene related materials. Currently, the use of ‘as is’ graphene oxide (GO) has been largely overlooked, with the vast majority of researchers choosing to reduce GO to graphene or use it as part of a composite electrode. In this paper, ‘as is’ GO is explored and electrochemically characterized using a range of electrochemical redox probes, namely potassium ferrocyanide(II), N,N,N ,N -tetramethyl-p-phenylenediamine (TMPD), dopamine hydrochloride and epinephrine. Furthermore, the electroanalytical efficacy of GO is explored towards the sensing of dopamine hydrochloride and epinephrine via cyclic voltammetry. The electrochemical response of GO is benchmarked against pristine graphene and edge plane-/basal plane pyrolytic graphite (EPPG and BPPG respectively) alternatives, where the GO shows an enhanced electrochemical/electroanalytical response. When using GO as an electrode material, the electrochemical response of the analytes studied herein deviate from that expected and exhibit altered electrochemical responses. The oxygenated species encompassing GO strongly influence and dominate the observed voltammetry, which is crucially coverage dependent. GO electrocatalysis is observed, which is attributed to the presence of beneficial oxygenated species dictating the response in specific cases, demonstrating potential for advantageous electroanalysis to be realized. Note however, that crucial coverage based regions are observed at GO modified electrodes, owing to the synergy of edge plane sites and oxygenated species. We report the true beneficial electrochemistry of GO, which has enormous potential to be beneficially used in various electrochemical applications ‘as is’ rather than be simply used as a precursor to making graphene and is truly a fascinating member of the graphene family
    • Reverse microemulsion synthesis of layered gadolinium hydroxide

      Xu, Yadong; Suthar, Jugal; Egbu, Raphael; Weston, Andrew J.; Fogg, Andrew M.; Williams, Gareth R.; University College London; University of Chester (Elsevier, 2017-11-05)
      A reverse microemulsion approach has been explored for the synthesis of layered gadolinium hydroxide (LGdH) nanoparticles in this work. This method uses oleylamine as a multifunctional agent, acting as surfactant, oil phase and base. 1-butanol is additionally used as a co-surfactant. A systematic study of the key reaction parameters was undertaken, including the volume ratio of surfactant (oleylamine) to water, the reaction time, synthesis temperature, and the amount of co-surfactant (1-butanol) added. It proved possible to obtain pristine LGdH materials at temperatures of 120 °C or below with an oleylamine: water ratio of 1:4. Using larger amounts of surfactant or higher temperatures caused the formation of Gd(OH)3, either as the sole product or as a major impurity phase. The LGdH particles produced have sizes of ca. 200 nm, with this size being largely independent of temperature or reaction time. Adjusting the amount of 1-butanol co-surfactant added permits the size to be varied between 200 and 300 nm.
    • Energetic fluctuations in amorphous semiconducting polymers: Impact on charge-carrier mobility

      Manjoj Gali, Sai; D'Avino, Gabriele; Aurel, Philippe; Han, Guangchao; Yi, Yuanping; Papadopoulos, Theodoros A.; Coropceanu, Veaceslav; Bredas, Jean-Luc; Hadziiannou, Georges; Muccioli, Luca; University of Bologna; University of Chester; Georgia Institute of Technology (American Institute of Physics, 2017-10-03)
      We present a computational approach to model hole transport in an amorphous semiconducting fluorene-triphenylamine copolymer (TFB), which is based on the combination of molecular dynamics to predict the morphology of the oligomeric system and Kinetic Monte Carlo (KMC), parameterized with quantum chemistry calculations, to simulate hole transport. Carrying out a systematic comparison with available experimental results, we discuss the role that different transport parameters play in the KMC simulation and in particular the dynamic nature of positional and energetic disorder on the temperature and electric field dependence of charge mobility. It emerges that a semi-quantitative agreement with experiments is found only when the dynamic nature of the disorder is taken into account. This study establishes a clear link between microscopic quantities and macroscopic hole mobility for TFB and provides substantial evidence of the importance of incorporating fluctuations, at the molecular level, to obtain results that are in good agreement with temperature and electric field-dependent experimental mobilities. Our work makes a step forward towards the application of nanoscale theoretical schemes as a tool for predictive material screening.
    • Synthesis, characterisation and in-vitro cytotoxicity of mixed ligand Pt(II) oxadiazoline complexes with hexamethylenetetramine and 7-nitro-1,3,5-triazaadamantane.

      Sieste, Stefanie; Lifincev, Irina; Stein, Nina; Wagner, Gabriele; University of Ulm (Germany); University of Chester (UK) (Royal Society of Chemistry, 2017-08-21)
      Trans-platinum(II) oxadiazoline complexes with 7-nitro-1,3,5-triazaadamantane (NO2-TAA) or hexamethylenetetramine (hmta) ligands have been synthesised from trans-[PtCl2(PhCN)2] via cycloaddition of nitrones to one of the coordinated nitriles, followed by exchange of the other nitrile by NO2-TAA or hmta. Stoichiometric control allows for the selective synthesis of mono- and dinuclear complexes where 7-NO2TAA and hmta act as mono- and bidentate ligands, respectively. Precursors and the target complexes trans-[PtCl2(hmta)(oxadiazoline)], trans-[PtCl2(NO2-TAA)(oxadiazoline)] and trans-[{PtCl2(oxadiazoline)}2(hmta)] were characterised by elemental analysis, IR and multinuclear (1H, 13C, 195Pt) NMR spectroscopy. DFT (B3LYP/6-31G*/LANL08) and AIM calculations suggest a stronger bonding of hmta with the [PtCl2(oxadiazoline)] fragment, in agreement with the experimentally observed reactivity in the ligand exchange (hmta > 7-NO2TAA). Replacement of the nitrile by hmta is predicted more exothermic than that with 7-NO2-TAA, although the activation barriers are similar. Protonation of the non-coordinated N atoms is anticipated to weaken the Pt-N bond and lower the activation barrier for ligand exchange. This effect might help activate these compounds in a slightly acidic environment such as some tumour tissues. Ten of the new compounds were tested for their in vitro cytotoxicity in the human cancer cell lines HeLa and A549. Some of the mononuclear complexes are more potent than cisplatin, and their activity is still high in A549 where cisplatin shows little effect. The dinuclear complexes are inactive, presumably due to their lipophilicity and reduced solubility in water.
    • Volatile organic compounds (VOCs) in photochemically aged air from the eastern and western Mediterranean

      Derstroff, Bettina; Hueser, Imke; Bourtsoukidis, Efstratios; Crowley, John N.; Fischer, Horst; Gromov, Sergey; Harder, Hartwig; Janssen, Ruud; Kesselmeier, Juergen; Lelieveld, Jos; Mallik, Chinmay; Martinez, Monica; Novelli, Anna; Parchatka, Uwe; Phillips, Gavin J.; Sander, Rolf; Sauvage, Carina; Schuladen, Jan; Stoenner, Christof; Tomsche, Laura; Williams, Jonathan; Max Planck Institute for Chemistry; Massachusetts Institute of Technology; Cyprus Institute; Forschungszentrum Juelich; University of Chester (Copernicus Publications, 2017-08-09)
      During the summertime CYPHEX campaign (CYprus PHotochemical EXperiment 2014) in the eastern Mediterranean, multiple volatile organic compounds (VOCs) were measured from a 650 m hilltop site in western Cyprus (34° 57′ N/32° 23′ E). Periodic shifts in the northerly Etesian winds resulted in the site being alternately impacted by photochemically processed emissions from western (Spain, France, Italy) and eastern (Turkey, Greece) Europe. Furthermore, the site was situated within the residual layer/free troposphere during some nights which were characterized by high ozone and low relative humidity levels. In this study we examine the temporal variation of VOCs at the site. The sparse Mediterranean scrub vegetation generated diel cycles in the reactive biogenic hydrocarbon isoprene, from very low values at night to a diurnal median level of 80–100 pptv. In contrast, the oxygenated volatile organic compounds (OVOCs) methanol and acetone exhibited weak diel cycles and were approximately an order of magnitude higher in mixing ratio (ca. 2.5–3 ppbv median level by day, range: ca. 1–8 ppbv) than the locally emitted isoprene and aromatic compounds such as benzene and toluene. Acetic acid was present at mixing ratios between 0.05 and 4 ppbv with a median level of ca. 1.2 ppbv during the daytime. When data points directly affected by the residual layer/free troposphere were excluded, the acid followed a pronounced diel cycle, which was influenced by various local effects including photochemical production and loss, direct emission, dry deposition and scavenging from advecting air in fog banks. The Lagrangian model FLEXPART was used to determine transport patterns and photochemical processing times (between 12 h and several days) of air masses originating from eastern and western Europe. Ozone and many OVOC levels were  ∼  20 and  ∼  30–60 % higher, respectively, in air arriving from the east. Using the FLEXPART calculated transport time, the contribution of photochemical processing, sea surface contact and dilution was estimated. Methanol and acetone decreased with residence time in the marine boundary layer (MBL) with loss rate constants of 0.74 and 0.53 day−1 from eastern Europe and 0.70 and 0.34 day−1 from western Europe, respectively. Simulations using the EMAC model underestimate these loss rates. The missing sink in the calculation is most probably an oceanic uptake enhanced by microbial consumption of methanol and acetone, although the temporal and spatial variability in the source strength on the continents might play a role as well. Correlations between acetone and methanol were weaker in western air masses (r2  =  0.68), but were stronger in air masses measured after the shorter transport time from the east (r2  =  0.73).
    • Volatile organic compounds (VOCs) in photochemically aged air from the Eastern and Western Mediterranean

      Derstroff, Bettina; Hueser, Imke; Sander, Rolf; Bourtsoukidis, Efstratios; Crowley, John N.; Fischer, Horst; Gromov, Sergey; Harder, Hartwig; Kesselmeier, Juergen; Lelieveld, Jos; Mallik, Chinmay; Martinez, Monica; Novelli, Anna; Parchatka, Uwe; Phillips, Gavin J.; Sauvage, Carina; Schuladen, Jan; Stoenner, Christof; Tomsche, Laura; Williams, Jonathan; Max Planck Institute for Chemistry; University of Chester; Forschungzentrum Juelich (Copernicus Publications, 2017-08-09)
      During the summertime CYPHEX campaign (CYprus PHotochemical EXperiment 2014) in the Eastern Mediterranean, multiple volatile organic compounds (VOCs) were measured from a 650 m hilltop site in western Cyprus (34°57' N/32°23' E). Periodic shifts in the northerly Etesian winds resulted in the site being alternately impacted by photochemically processed emissions from Western (Spain, France, Italy) and Eastern (Turkey, Greece) Europe. In this study we examine the temporal variation of VOCs at the site. The sparse Mediterranean scrub vegetation generated diel cycles in the reactive biogenic hydrocarbon isoprene, from below detection limit at night to 100 pptv by day on average. In contrast, the oxygenated volatile organic compounds (OVOCs) methanol and acetone exhibited no diel cycle and were approximately an order of magnitude higher in mixing ratio (range: 1–8 ppbv) than the locally emitted isoprene (up to 320 pptv), total monoterpenes (up to 250 pptv) and aromatic compounds such as benzene and toluene (up to 100 pptv, spikes up to 400 pptv). Acetic acid was present at mixing ratios between 0.05 and 4 ppbv and followed a pronounced diel cycle in one specific period, which was related to local production and loss and local meteorological effects. During the rest of the campaign the impact of the free troposphere and long distance transport from source regions dominated over local processes and diel cycles were not observed. The Lagrangian model FLEXPART was used to determine transport patterns and photochemical processing times of air masses originating from Eastern and Western Europe. Eastern and Western European air masses showed distinct trace gas concentrations, with ca. 20 % higher ozone and ca. 30–50 % higher values for most of the OVOCs observed from the East. Using the FLEXPART calculated transport time, the contribution of photochemical processing, sea surface contact and dilution was estimated. Methanol, acetone and acetic acid all decreased with residence time in the marine boundary layer (MBL) with loss rates of 0.1 ± 0.01 ppbv/h, 0.06 ± 0.01 ppbv/h, 0.05 ± 0.01 ppbv/h from Eastern Europe and 0.06 ± 0.01 ppbv/h, 0.02 ± 0.004 ppbv/h and 0.03 ± 0.004 ppbv/h from Western Europe, respectively. The most soluble species, acetic acid, showed the lowest loss rates, indicating that solubility limited deposition to the ocean was not the only factor and that turbulent transport, plume dilution, microbial consumption within the surface of the ocean and especially entrainment from the free troposphere may also be important. Correlations between acetone, methanol and acetic acid were rather weak in western air masses (r2 = 0.52–0.62), but were stronger in air masses measured after the shorter transport time from the East (r2 = 0.53–0.81).
    • Improved Stability of Polymer Solar Cells in Ambient Air via Atomic Layer Deposition of Ultra-Thin Dielectric Layers

      Polydorou, Ermioni; Botzakaki, Martha A.; Sakellis, Ilias; Soultati, Anastasia; Kaltzoglou, Andreas; Papadopoulos, Theodoros A.; Briscoe, Joe; Drivas, Charalabos; Seintis, Kostas; Fakis, Mihalis; Palilis, Leonidas C.; Georga, Stavroula N.; Krontiras, Christoforos A.; Kennou, Stella; Falaras, Polycarpos; Boukos, Nikos; Davazoglou, Dimitris; Argitis, Panagiotis; Vasilopoulou, Maria; National Center for Scientific Research Demokritos; University of Patras; University of Chester; Queen Mary University of London; (Wiley, 2017-07-12)
      Polymer solar cells have attracted tremendous interest in the highly competitive solar energy sector, due to the practical advantages they exhibit, such as being lightweight, flexible, and low cost, in stark contrast to traditional photovoltaic technologies. However, their successful commercialization is still hindered by issues related to device instability. Here, atomic layer deposition (ALD) is employed to deposit conformal ultrathin dielectrics, such as alumina (Al2O3) and zirconia (ZrO2), on top of ZnO electron extraction layers to address problems that arise from the defect-rich nature of these layers. The deposition of dielectrics on ZnO significantly improves its interfacial electronic properties, manifested primarily with the decrease in the work function of ZnO and the concomitant reduction of the electron extraction barrier as well as the reduced recombination losses. Significant efficiency enhancement is obtained with the incorporation of six ALD cycles of Al2O3 into inverted devices, using photoactive layers, that consist of poly(3-hexylthiophene):indene-C60-bisadduct or poly({4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b′]dithiophene-2,6-diyl}{3-fluoro-2-[(2-ethylhexyl)carbonyl] thieno[3,4-b] thiophenediyl}):[6,6]-phenyl-C70-butyric acid methyl ester. More importantly, upon performing lifetime studies (over a period of 350 h), a strong improvement in polymer solar cell stability is observed when using the ALD-modified ZnO films.