• Login / Register
    Search 
    •   Home
    • Faculty of Science and Engineering
    • Mechanical Engineering
    • Search
    •   Home
    • Faculty of Science and Engineering
    • Mechanical Engineering
    • Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of ChesterRepCommunitiesTitleAuthorsPublication DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsPublication DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    Filter by Category

    SubjectsEnergy harvesting (1)MEMS (1)
    Piezoelectric transducers (1)
    View MoreJournalSensors and Actuators A: Physical (1)AuthorsArroyo, Emmanuelle (1)
    Chen, Shao-Tuan (1)
    Du, Sijun (1)Jia, Yu (1)Seshia, Ashwin A. (1)Sun, Boqian (1)Zhao, Chun (1)TypesArticle (1)

    About

    AboutUniversity of Chester

    Statistics

    Display statistics
     

    Search

    Show Advanced FiltersHide Advanced Filters

    Filters

    Now showing items 1-1 of 1

    • List view
    • Grid view
    • Sort Options:
    • Relevance
    • Title Asc
    • Title Desc
    • Issue Date Asc
    • Issue Date Desc
    • Results Per Page:
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100

    • 1CSV
    • 1RefMan
    • 1EndNote
    • 1BibTex
    • Selective Export
    • Select All
    • Help
    Thumbnail

    A New Electrode Design Method in Piezoelectric Vibration Energy Harvesters to Maximize Output Power

    Du, Sijun; Jia, Yu; Chen, Shao-Tuan; Zhao, Chun; Sun, Boqian; Arroyo, Emmanuelle; Seshia, Ashwin A. (Elsevier, 2017-07-19)
    A resonant vibration energy harvester typically comprises of a clamped anchor and a vibrating shuttle with a proof mass. Piezoelectric materials are embedded in locations of high strain in order to transduce mechanical deformation into electrical charge. Conventional design for piezoelectric vibration energy harvesters (PVEH) usually utilizes piezoelectric materials and metal electrode layers covering the entire surface area of the cantilever with no consideration provided to examine the trade-off involved with respect to maximize output power. This paper reports on the theory and experimental verification underpinning optimization of the active electrode area in order to maximize output power. The calculations show that, in order to maximize the output power of a PVEH, the electrode should cover the piezoelectric layer from the peak strain area to a position, where the strain is a half of the average strain in all the previously covered area. With the proposed electrode design, the output power can be improved by 145% and 126% for a cantilever and a clamped-clamped beam, respectively. MEMS piezoelectric harvesters are fabricated to experimentally validate the theory.
    DSpace software (copyright © 2002 - 2019)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.