• Modelling low velocity impact induced damage in composite laminates

      Shi, Yu; Soutis, Constantinos; University of Chester; University of Manchester (SpringerOpen, 2017-07-26)
      The paper presents recent progress on modelling low velocity impact induced damage in fibre reinforced composite laminates. It is important to understand the mechanisms of barely visible impact damage (BVID) and how it affects structural performance. To reduce labour intensive testing, the development of finite element (FE) techniques for simulating impact damage becomes essential and recent effort by the composites research community is reviewed in this work. The FE predicted damage initiation and propagation can be validated by Non Destructive Techniques (NDT) that gives confidence to the developed numerical damage models. A reliable damage simulation can assist the design process to optimise laminate configurations, reduce weight and improve performance of components and structures used in aircraft construction.
    • Modelling low velocity impact induced damage in composite laminates

      Shi, Yu; Soutis, Constantinos; University of Chester; University of Manchester (Springer, 2017-07-26)
      The paper presents recent progress on modelling low velocity impact induced damage in fibre reinforced composite laminates. It is important to understand the mechanisms of barely visible impact damage (BVID) and how it affects structural performance. To reduce labour intensive testing, the development of finite element (FE) techniques for simulating impact damage becomes essential and recent effort by the composites research community is reviewed in this work. The FE predicted damage initiation and propagation can be validated by Non Destructive Techniques (NDT) that gives confidence to the developed numerical damage models. A reliable damage simulation can assist the design process to optimise laminate configurations, reduce weight and improve performance of components and structures used in aircraft construction.
    • Modelling transverse matrix cracking and splitting of cross-ply composite laminates under four point bending

      Shi, Yu; Soutis, Constantinos; University of Chester; University of Manchester (Elsevier, 2015-11-30)
      The transverse matrix cracking and splitting in a cross-ply composite laminate has been modelled using the finite element (FE) method with the commercial code Abaqus/Explicit 6.10. The equivalent constraint model (ECM) developed by Soutis et al. has been used for the theoretical prediction of matrix cracking and results have been compared to those obtained experimentally and numerically. A stress-based traction–separation law has been used to simulate the initiation of matrix cracks and their growth under mixed-mode loading. Cohesive elements have been inserted between the interfaces of every neighbouring element along the fibre orientation for all 0° and 90° plies to predict the matrix cracking and splitting at predetermined crack spacing based on experimental observations. Good agreement is obtained between experimental and numerical crack density profiles for different 90° plies. In addition, different mechanisms of matrix cracking and growth processes were captured and splitting was also simulated in the bottom 0° ply by the numerical model.
    • Modifications of surface properties of beta Ti by laser gas diffusion nitriding

      Ng, Chi-Ho; Chan, Chi-Wai; Man, Hau-Chung; Waugh, David G.; Lawrence, Jonathan; University of Chester; Queen's University; The Hong Kong Polytechnic University (AIP Publishing, 2016-03-31)
      b-type Ti-alloy is a promising biomedical implant material as it has a low Young’s modulus and is also known to have inferior surface hardness. Various surface treatments can be applied to enhance the surface hardness. Physical vapor deposition and chemical vapor deposition are two examples of this but these techniques have limitations such as poor interfacial adhesion and high distortion. Laser surface treatment is a relatively new surface modification method to enhance the surface hardness but its application is still not accepted by the industry. The major problem of this process involves surface melting which results in higher surface roughness after the laser surface treatment.This paper will report the results achieved by a 100W CW fiber laser for laser surface treatment without the surface being melted. Laser processing parameters were carefully selected so that the surface could be treated without surface melting and thus the surface finish of the component could be maintained. The surface and microstructural characteristics of the treated samples were examined using x-ray diffractometry, optical microscopy, three-dimensional surface profile and contact angle measurements, and nanoindentation test.
    • Modifications of surface properties of beta Ti by laser gas diffusion nitriding

      Ng, Chi-Ho; Lawrence, Jonathan; Waugh, David G.; Chan, Chi-Wai; Man, Hau-Chung; University of Chester (Laser Institute of America, 2015-10)
      β -type Ti-alloy is a promising biomedical implant material as it has a low Young’s modulus but is also known to have inferior surface hardness. Various surface treatments can be applied to enhance the surface hardness. Physical vapour deposition (PVD) and chemical vapour deposition (CVD) are two examples of this but these techniques have limitations such as poor interfacial adhesion and high distortion. Laser surface treatment is a relatively new surface modification method to enhance the surface hardness but its application is still not accepted by the industry. The major problem of this process involves surface melting which results in higher surface roughness after the laser surface treatment. This paper will report the results achieved by a 100 W CW fiber laser for laser surface treatment without the surface being melted. Laser processing parameters were carefully selected so that the surface could be treated without surface melting and thus the surface finish of the component could be maintained. The surface and microstructural characteristics of the treated samples were examined using X-ray diffractometry (XRD), optical microscopy (OM), 3-D surface profile & contact angle measurements and nano-indentation test.
    • Modulating the wettability characteristics and bioactivity of polymeric materials using laser surface treatment

      Waugh, David G.; Lawrence, Jonathan; Shukla, Pratik; University of Chester (Laser Institute of America, 2015-10)
      It has been thoroughly demonstrated previously that lasers hold the ability to modulate surface properties of materials with the result being utilization of such lasers in both research and industry. What is more, these laser surface treatments have been shown to affect the adhesion characteristics and bio-functionality of those materials. This paper details the use of a Synrad CO2 laser marking system to surface treat nylon 6,6 and polytetrafluoroethylene (PTFE). The laser-modified surfaces were analyzed using 3D surface profilometry to ascertain an increase in surface roughness when compared to the as-received samples. The wettability characteristics were determined using the sessile drop method and showed variations in contact angle for both the nylon 6,6 and PTFE. For the PTFE it was shown that the laser surface treatment gave rise to a more hydrophobic surface with contact angles of up to 150° being achieved. For the nylon 6,6, it was observed that the contact angle was modulated approximately ±10° for different samples which could be attributed to a likely mixed state wetting regime. The effects of the laser surface treatment on osteoblast cell and stem cell growth is discussed showing an overall enhancement of biomimetic properties, especially for the nylon 6,6. This work investigates the potential governing parameters which drives the wettability/adhesion characteristics and bioactivity of the laser surface treated polymeric materials.
    • Modulating the wettability characteristics and bioactivity of polymeric materials using laser surface treatment

      Waugh, David G.; Lawrence, Jonathan; Shukla, Pratik; University of Chester (AIP Publishing, 2016-03-31)
      It has been thoroughly demonstrated previously that lasers hold the ability to modulate surface properties of materials with the result being utilization of such lasers in both research and industry. What is more, these laser surface treatments have been shown to affect the adhesion characteristics and bio-functionality of those materials. This paper details the use of a Synrad CO2 laser marking system to surface treat nylon 6,6 and polytetrafluoroethylene (PTFE). The laser-modified surfaces were analyzed using 3D surface profilometry to ascertain an increase in surface roughness when compared to the as-received samples. The wettability characteristics were determined using the sessile drop method and showed variations in contact angle for both the nylon 6,6 and PTFE. For the PTFE it was shown that the laser surface treatment gave rise to a more hydrophobic surface with contact angles of up to 150° being achieved. For the nylon 6,6, it was observed that the contact angle was modulated approximately ±10° for different samples which could be attributed to a likely mixed state wetting regime. The effects of the laser surface treatment on osteoblast cell and stem cell growth is discussed showing an overall enhancement of biomimetic properties, especially for the nylon 6,6. This work investigates the potential governing parameters which drives the wettability/adhesion characteristics and bioactivity of the laser surface treated polymeric materials.
    • Multi-metric Evaluation of the Effectiveness of Remote Learning in Mechanical and Industrial Engineering During the COVID-19 Pandemic: Indicators and Guidance for Future Preparedness

      Behera, Amar Kumar; de Sousa, Ricardo Alves; Oleksik, Valentin; Dong, Jingyan; Fritzen, Daniel; University of Chester; University of Aveiro; Lucian Blaga University of Sibiu; North Carolina State University; SATC College (UK Data Service, 2021-07-27)
      This data set contains data collected from 5 universities in 5 countries about the effectiveness of e-learning during the COVID-19 pandemic, specifically tailored to mechanical and industrial engineering students. A survey was administered in May, 2020 at these universities simultaneously, using Google Forms. The survey had 41 questions, including 24 questions on a 5-point Likert scale. The survey questions gathered data on their program of study, year of study, university of enrolment and mode of accessing their online learning content. The Likert scale questions on the survey gathered data on the effectiveness of digital delivery tools, student preferences for remote learning and the success of the digital delivery tools during the pandemic. All students enrolled in modules taught by the authors of this study were encouraged to fill the survey up. Additionally, remaining students in the departments associated with the authors were also encouraged to fill up the form through emails sent on mailing lists. The survey was also advertised on external websites such as survey circle and facebook. Crucial insights have been obtained after analysing this data set that link the student demographic profile (gender, program of study, year of study, university) to their preferences for remote learning and effectiveness of digital delivery tools. This data set can be used for further comparative studies and was useful to get a snapshot of student preferences and e-learning effectiveness during the COVID-19 pandemic, which required the use of e-learning tools on a wider scale than previously and using new modes such as video conferencing that were set up within a short timeframe of a few days or weeks.
    • Multimodal Shear Wave Deicing Using Fibre Piezoelectric Actuator on Composite for Aircraft Wings

      Shi, Yu; Jia, Yu; University of Chester
      The formation and accretion of ice on aircraft wings during flight can be potentially disastrous and existing in-flight deicing methods are either bulky or power consuming. This paper investigates the use of shear wave deicing driven by a macro fibre piezoelectric composite actuator on a composite plate typically used for aircraft wings. While the few existing research on this novel deicing approach focused on either theoretical studies or single frequency mode optimization that required high-excitation amplitudes, this study revealed that the use of multimodal excitation through broadband frequency sweeps has the potential to promote the chance of shear stress induced deicing at a relatively small excitation amplitude. The results reported here form the foundation for a pathway towards low power and lightweight deicing mechanism for in-flight aircraft wings.
    • Multiphysics vibration FE model of piezoelectric macro fibre composite on carbon fibre composite structures

      Jia, Yu; Wei, Xueyong; Xu, Liu; Wang, Congsi; Lian, Peiyuan; Xue, Song; Alsaadi, Ahmed; Shi, Yu; University of Chester; Xi'an Jiaotong University; Xidian University (Elsevier, 2018-12-21)
      This paper presents a finite element (FE) model developed using commercial FE software COMSOL to simulate the multiphysical process of pieozoelectric vibration energy harvesting (PVEH), involving the dynamic mechanical and electrical behaviours of piezoelectric macro fibre composite (MFC) on carbon fibre composite structures. The integration of MFC enables energy harvesting, sensing and actuation capabilities, with applications found in aerospace, automotive and renewable energy. There is an existing gap in the literature on modelling the dynamic response of PVEH in relation to real-world vibration data. Most simulations were either semi-analytical MATLAB models that are geometry unspecific, or basic FE simulations limited to sinusoidal analysis. However, the use of representative environment vibration data is crucial to predict practical behaviour for industrial development. Piezoelectric device physics involving solid mechanics and electrostatics were combined with electrical circuit defined in this FE model. The structure was dynamically excited by interpolated vibration data files, while orthotropic material properties for MFC and carbon fibre composite were individually defined for accuracy. The simulation results were validated by experiments with <10﹪ deviation, providing confidence for the proposed multiphysical FE model to design and optimise PVEH smart composite structures.
    • A New Electrode Design Method in Piezoelectric Vibration Energy Harvesters to Maximize Output Power

      Du, Sijun; Jia, Yu; Chen, Shao-Tuan; Zhao, Chun; Sun, Boqian; Arroyo, Emmanuelle; Seshia, Ashwin A.; University of Cambridge; University of Chester (Elsevier, 2017-07-19)
      A resonant vibration energy harvester typically comprises of a clamped anchor and a vibrating shuttle with a proof mass. Piezoelectric materials are embedded in locations of high strain in order to transduce mechanical deformation into electrical charge. Conventional design for piezoelectric vibration energy harvesters (PVEH) usually utilizes piezoelectric materials and metal electrode layers covering the entire surface area of the cantilever with no consideration provided to examine the trade-off involved with respect to maximize output power. This paper reports on the theory and experimental verification underpinning optimization of the active electrode area in order to maximize output power. The calculations show that, in order to maximize the output power of a PVEH, the electrode should cover the piezoelectric layer from the peak strain area to a position, where the strain is a half of the average strain in all the previously covered area. With the proposed electrode design, the output power can be improved by 145% and 126% for a cantilever and a clamped-clamped beam, respectively. MEMS piezoelectric harvesters are fabricated to experimentally validate the theory.
    • Non-Exhaust Vehicle Emissions of Particulate Matter and VOC from Road Traffic: A Review

      Harrison, Roy; Allan, James; Caruthers, David; Heal, Matthew; Lewis, Alastair; Marner, Ben; Murrells, Tim; Williams, Andrew; University of Birmingham; University of Manchester; Cambridge Environmental Research Consultants; University of Edinburgh; University of York; Air Quality Consultants; Ricardo Energy and Environment; University of Chester; King Abdulaziz University (Elsevier, 2021-07-01)
      As exhaust emissions of particles and volatile organic compounds (VOC) from road vehicles have progressively come under greater control, non-exhaust emissions have become an increasing proportion of the total emissions, and in many countries now exceed exhaust emissions. Non-exhaust particle emissions arise from abrasion of the brakes and tyres and wear of the road surface, as well as from resuspension of road dusts. The national emissions, particle size distributions and chemical composition of each of these sources is reviewed. Most estimates of airborne concentrations derive from the use of chemical tracers of specific emissions; the tracers and airborne concentrations estimated from their use are considered. Particle size distributions have been measured both in the laboratory and in field studies, and generally show particles to be in both the coarse (PM2.5-10) and fine (PM2.5) fractions, with a larger proportion in the former. The introduction of battery electric vehicles is concluded to have only a small effect on overall road traffic particle emissions. Approaches to numerical modelling of non-exhaust particles in the atmosphere are reviewed. Abatement measures include engineering controls, especially for brake wear, improved materials (e.g. for tyre wear) and road surface cleaning and dust suppressants for resuspension. Emissions from solvents in screen wash and de-icers now dominate VOC emissions from traffic in the UK, and exhibit a very different composition to exhaust VOC emissions. Likely future trends in non-exhaust particle emissions are described.
    • A Numerical Feasibility Study of Kinetic Energy Harvesting from Lower Limb Prosthetics

      Jia, Yu; Wei, Xueyong; Pu, Jie; Xie, Pengheng; Wen, Tao; Wang, Congsi; Lian, Peiyuan; Xue, Song; Shi, Yu; Aston University; University of Chester; Xidian University; Xi'an Jiaotong University (MDPI, 2019-10-10)
      With the advancement trend of lower limb prosthetics headed towards bionics (active ankle and knee) and smart prosthetics (gait and condition monitoring), there is an increasing integration of various sensors (micro-electromechanical system (MEMS) accelerometers, gyroscopes, magnetometers, strain gauges, pressure sensors, etc.), microcontrollers and wireless systems, and power drives including motors and actuators. All of these active elements require electrical power. However, inclusion of a heavy and bulky battery risks to undo the lightweight advancements achieved by the strong and flexible composite materials in the past decades. Kinetic energy harvesting holds the promise to recharge a small on-board battery in order to sustain the active systems without sacrificing weight and size. However, careful design is required in order not to over-burden the user from parasitic effects. This paper presents a feasibility study using measured gait data and numerical simulation in order to predict the available recoverable power. The numerical simulations suggest that, depending on the axis, up to 10s mW average electrical power is recoverable for a walking gait and up to 100s mW average electrical power is achievable during a running gait. This takes into account parasitic losses and only capturing a fraction of the gait cycle to not adversely burden the user. The predicted recoverable power levels are ample to self-sustain wireless communication and smart sensing functionalities to support smart prosthetics, as well as extend the battery life for active actuators in bionic systems. The results here serve as a theoretical foundation to design and develop towards regenerative smart bionic prosthetics.
    • On the study of oil paint adhesion on optically transparent glass: Conservation of reverse paintings on glass

      Bayle, M.; Waugh, David G.; Colston, Belinda J.; Lawrence, Jonathan; University of Chester (Elsevier, 2015-12-01)
      Reverse painting on glass is a technique which consists of applying a cold paint layer on the reverse-side of glass. The main challenge facing these artworks is the fragile adhesion of the pictorial layer – a simple movement can modify the appearance of the painting. This paper details a study into the adhesion parameters of pigments on glass and the comparison between different pigments. The relationships between the binder (linseed oil) with pigments and the glass with or without the use of an adhesive are studied. Physical analyses by surface characterisation have been carried out to better understand the influence of the pigment. The use of a sessile drop device, optical microscopy, scanning electron microscopy (SEM), a surface 3D profiler and a pencil hardness scratch tester were necessary to establish a comparison of the pictorial layer adhesion. A comparison of the effect of two adhesives; namely ox gall and gum arabic, has shown that the adhesion is not only linked to the physical parameters but that possible chemical reactions can influence the results. Finally, a treatment based on humidity-extreme storage has shown the weakness of some pictorial layers.
    • Optimisation and management of energy generated by a multifunctional MFC-integrated composite chassis for rail vehicles

      Liu, Yiding; Du, Sijun; Micallef, Christopher; Jia, Yu; Shi, Yu; Hughes, Darren; University of Warwick; University of California at Berkeley; Aston University; University of Chester
      With the advancing trend towards lighter and faster rail transport, there is an increasing interest in integrating composite and advanced multifunctional materials in order to infuse smart sensing and monitoring, energy harvesting and wireless capabilities within the otherwise purely mechanical rail structures and the infrastructure. This paper presents a holistic multiphysics numerical study, across both mechanical and electrical domains, that describes an innovative technique of harvesting energy from a piezoelectric micro fiber composites (MFC) built-in composite rail chassis structure. Representative environmental vibration data measured from a rail cabin have been critically leveraged here to help predict the actual vibratory and power output behaviour under service. Time domain mean stress distribution data from the Finite Element simulation were used to predict the raw AC voltage output of the MFCs. Conditioned power output was then calculated using circuit simulation of several state-of-the-art power conditioning circuits. A peak instantaneous rectified power of 181.9 mW was obtained when eight-stage Synchronised Switch Harvesting Capacitors (SSHC) from eight embedded MFCs were located. The results showed that the harvested energy could be sufficient to sustain a self-powered structural health monitoring system with wireless communication capabilities. This study serves as a theoretical foundation of scavenging for vibrational power from the ambient state in a rail environment as well as to pointing to design principles to develop regenerative and power neutral smart vehicles.
    • Panel adjustment and error analysis for a large active main reflector antenna by using the panel adjustment matrix

      Lian, Peiyuan; Wang, Congsi; Xue, Song; Xu, Qian; Wang, Na; xiang, Binbin; Shi, Yu; Jia, Yu; Xidian University; University of Chester; Aston University; Chinese Academy of Sciences
      Active panels are generally applied in large aperture and high frequency reflector antennas, and the precise calculation of the actuator adjustment value is of great importance. First, the approximation relationship between the adjustment value and panel elastic deformation is established. Subsequently, a panel adjustment matrix for the whole reflector is derived to calculate the reflector deformation caused by the actuator adjustment. Next, the root mean square (rms) error of the deformed reflector is expressed as a quadratic form in the matrix form, and the adjustment value can be derived easily and promptly from the corresponding extreme value. The solution is expected to be unique and optimal since the aforementioned quadratic form is a convex function. Finally, a 35 m reflector antenna is adopted to perform the panel adjustments, and the effect of the adjustment errors is discussed. The results show that compared to the traditional model, where the panel elastic deformation is not considered, the proposed method exhibits a higher accuracy and is more suitable for use in large reflectors with a high operation frequency. The adjustment errors in different rings exert different influences on the gain and sidelobe level, which can help determine the actuator distribution with different precisions.
    • Parametric Study of Environmental Conditions on The Energy Harvesting Efficiency for The Multifunctional Composite Structures

      Wen, Tao; Ratner, Alon; Jia, Yu; Shi, Yu; University of Chester;University of Warwick; Aston University
      This paper presents a parametric study of the efficacy of an integrated vibration energy harvesting device under the environmental condition representative of an offshore wind turbine. A multifunctional glass fibre composite with an integrated Micro Fibre Composite (MFC) energy harvesting device was tested by swept sine vibration under environmental conditions that ranged from – 40°C to 70°C in temperature and 10%RH to 90%RH in humidity in order to characterise the sensitivity and dependence of energy harvesting on environmental conditions. Experimental vibration testing was complemented with theoretical analysis to investigate the relative contributions to the temperature dependence of energy harvesting. This included mechanical properties of the stiffness and strength of the cantilever structure and the electrical properties of the MFC transducer, including its dielectric constants and charge coefficients. An inverse proportionality was observed between the magnitude of harvested energy and the climatic temperature. The efficiency of energy harvesting was dominated by the stiffness of the cantilever, which displayed viscoelastic temperature dependence. The sample was also tested with a vibration profile obtained from a wind turbine in order to validate the temperature influence under typical service conditions. Numerical modal analysis was used to determine the shapes of resonance modes, the frequencies of which were temperature dependent. Humidity was observed to have a secondary influence on energy harvesting, with no significant short-term effect on the structural properties of the samples within the limits of the experimental method.
    • Piezoelectric vibration energy harvesting: A connection configuration scheme to increase operational range and output power

      Du, Sijun; Jia, Yu; Seshia, Ashwin A.; University of Cambridge; University of Chester (SAGE, 2016-12-12)
      For a conventional monolithic piezoelectric transducer (PT) using a full-bridge rectifier, there is a threshold voltage that the open-circuit voltage measured across the PT must attain prior to any transfer of energy to the storage capacitor at the output of the rectifier. This threshold voltage usually depends on the voltage of the storage capacitor and the forward voltage drop of diodes. This article presents a scheme of splitting the electrode of a monolithic piezoelectric vibration energy harvester into multiple (n) equal regions connected in series in order to provide a wider operating voltage range and higher output power while using a full-bridge rectifier as the interface circuit. The performance of different series stage numbers has been theoretically studied and experimentally validated. The number of series stages (n≥1n≥1) can be predefined for a particular implementation, which depends on the specified operating conditions, to achieve optimal performance. This enables the system to attain comparable performance compared to active interface circuits under an increased input range while no additional active circuits are required and the system is comparatively less affected by synchronized switching damping effect.
    • The Potential of Incremental Forming Techniques for Aerospace Applications

      de Sousa, Ricardo Alves; Afonso, Daniel; Rubino, Filice; Behera, Amar Kumar; University of Aveiro; King Juan Carlos University; University of Chester
      Incremental sheet metal forming (ISF) processes are part of a set of non-classical techniques that allow producing low-batches, customized and/or specific geometries for advanced engineering applications, such as aerospace, automotive and biomedical parts. Combined or not with other joining processes and additive manufacturing techniques, ISF processes permit rapid prototyping frameworks, and can be included in the class of smart manufacturing processes. This chapter discusses the fundamentals of ISF technology, key attributes, future challenges and presents few examples related to the use of incremental forming for the development of complex parts as specifically found in aerospace applications such as aerofoils. The use of incremental forming to produce customized designs and to perform quick try-outs of ready-to-use parts contributes to decrease the time to market, decrease tooling cost and increase part design freedom.
    • Predicting the critical heat flux in pool boiling based on hydrodynamic instability induced irreversible hot spots

      Zhao, Huayong; Williams, Andrew; Loughborough University; University of Chester (Elsevier, 2018-03-07)
      A new model, based on the experimental observation reported in the literature that CHF is triggered by the Irreversible Hot Spots (IHS), has been developed to predict the Critical Heat Flux (CHF) in pool boiling. The developed Irreversible Hot Spot (IHS) model can predict the CHF when boiling methanol on small flat surfaces and long horizontal cylinders of different sizes to within 5% uncertainty. It can also predict the effect of changing wettability (i.e. contact angle) on CHF to within 10% uncertainty for both hydrophilic and hydrophobic surfaces. In addition, a linear empirical correlation has been developed to model the bubble growth rate as a function of the system pressure. The IHS model with this linear bubble growth coefficient correlation can predict the CHF when boiling water on both flat surfaces and long horizontal cylinders to within 5% uncertainty up to 10 bar system pressure, and the CHF when boiling methanol on a flat surface to within 10% uncertainty up to 5 bar. The predicted detailed bubble grow and merge process from various sub-models are also in good agreement with the experimental results reported in the literature.