• A New Electrode Design Method in Piezoelectric Vibration Energy Harvesters to Maximize Output Power

      Du, Sijun; Jia, Yu; Chen, Shao-Tuan; Zhao, Chun; Sun, Boqian; Arroyo, Emmanuelle; Seshia, Ashwin A.; University of Cambridge; University of Chester (Elsevier, 2017-07-19)
      A resonant vibration energy harvester typically comprises of a clamped anchor and a vibrating shuttle with a proof mass. Piezoelectric materials are embedded in locations of high strain in order to transduce mechanical deformation into electrical charge. Conventional design for piezoelectric vibration energy harvesters (PVEH) usually utilizes piezoelectric materials and metal electrode layers covering the entire surface area of the cantilever with no consideration provided to examine the trade-off involved with respect to maximize output power. This paper reports on the theory and experimental verification underpinning optimization of the active electrode area in order to maximize output power. The calculations show that, in order to maximize the output power of a PVEH, the electrode should cover the piezoelectric layer from the peak strain area to a position, where the strain is a half of the average strain in all the previously covered area. With the proposed electrode design, the output power can be improved by 145% and 126% for a cantilever and a clamped-clamped beam, respectively. MEMS piezoelectric harvesters are fabricated to experimentally validate the theory.
    • A Numerical Feasibility Study of Kinetic Energy Harvesting from Lower Limb Prosthetics

      Jia, Yu; Wei, Xueyong; Pu, Jie; Xie, Pengheng; Wen, Tao; Wang, Congsi; Lian, Peiyuan; Xue, Song; Shi, Yu; Aston University; University of Chester; Xidian University; Xi'an Jiaotong University (MDPI, 2019-10-10)
      With the advancement trend of lower limb prosthetics headed towards bionics (active ankle and knee) and smart prosthetics (gait and condition monitoring), there is an increasing integration of various sensors (micro-electromechanical system (MEMS) accelerometers, gyroscopes, magnetometers, strain gauges, pressure sensors, etc.), microcontrollers and wireless systems, and power drives including motors and actuators. All of these active elements require electrical power. However, inclusion of a heavy and bulky battery risks to undo the lightweight advancements achieved by the strong and flexible composite materials in the past decades. Kinetic energy harvesting holds the promise to recharge a small on-board battery in order to sustain the active systems without sacrificing weight and size. However, careful design is required in order not to over-burden the user from parasitic effects. This paper presents a feasibility study using measured gait data and numerical simulation in order to predict the available recoverable power. The numerical simulations suggest that, depending on the axis, up to 10s mW average electrical power is recoverable for a walking gait and up to 100s mW average electrical power is achievable during a running gait. This takes into account parasitic losses and only capturing a fraction of the gait cycle to not adversely burden the user. The predicted recoverable power levels are ample to self-sustain wireless communication and smart sensing functionalities to support smart prosthetics, as well as extend the battery life for active actuators in bionic systems. The results here serve as a theoretical foundation to design and develop towards regenerative smart bionic prosthetics.
    • On the study of oil paint adhesion on optically transparent glass: Conservation of reverse paintings on glass

      Bayle, M.; Waugh, David G.; Colston, Belinda J.; Lawrence, Jonathan; University of Chester (Elsevier, 2015-12-01)
      Reverse painting on glass is a technique which consists of applying a cold paint layer on the reverse-side of glass. The main challenge facing these artworks is the fragile adhesion of the pictorial layer – a simple movement can modify the appearance of the painting. This paper details a study into the adhesion parameters of pigments on glass and the comparison between different pigments. The relationships between the binder (linseed oil) with pigments and the glass with or without the use of an adhesive are studied. Physical analyses by surface characterisation have been carried out to better understand the influence of the pigment. The use of a sessile drop device, optical microscopy, scanning electron microscopy (SEM), a surface 3D profiler and a pencil hardness scratch tester were necessary to establish a comparison of the pictorial layer adhesion. A comparison of the effect of two adhesives; namely ox gall and gum arabic, has shown that the adhesion is not only linked to the physical parameters but that possible chemical reactions can influence the results. Finally, a treatment based on humidity-extreme storage has shown the weakness of some pictorial layers.
    • Optimisation and management of energy generated by a multifunctional MFC-integrated composite chassis for rail vehicles

      Liu, Yiding; Du, Sijun; Micallef, Christopher; Jia, Yu; Shi, Yu; Hughes, Darren; University of Warwick; University of California at Berkeley; Aston University; University of Chester
      With the advancing trend towards lighter and faster rail transport, there is an increasing interest in integrating composite and advanced multifunctional materials in order to infuse smart sensing and monitoring, energy harvesting and wireless capabilities within the otherwise purely mechanical rail structures and the infrastructure. This paper presents a holistic multiphysics numerical study, across both mechanical and electrical domains, that describes an innovative technique of harvesting energy from a piezoelectric micro fiber composites (MFC) built-in composite rail chassis structure. Representative environmental vibration data measured from a rail cabin have been critically leveraged here to help predict the actual vibratory and power output behaviour under service. Time domain mean stress distribution data from the Finite Element simulation were used to predict the raw AC voltage output of the MFCs. Conditioned power output was then calculated using circuit simulation of several state-of-the-art power conditioning circuits. A peak instantaneous rectified power of 181.9 mW was obtained when eight-stage Synchronised Switch Harvesting Capacitors (SSHC) from eight embedded MFCs were located. The results showed that the harvested energy could be sufficient to sustain a self-powered structural health monitoring system with wireless communication capabilities. This study serves as a theoretical foundation of scavenging for vibrational power from the ambient state in a rail environment as well as to pointing to design principles to develop regenerative and power neutral smart vehicles.
    • Panel adjustment and error analysis for a large active main reflector antenna by using the panel adjustment matrix

      Lian, Peiyuan; Wang, Congsi; Xue, Song; Xu, Qian; Wang, Na; xiang, Binbin; Shi, Yu; Jia, Yu; Xidian University; University of Chester; Aston University; Chinese Academy of Sciences
      Active panels are generally applied in large aperture and high frequency reflector antennas, and the precise calculation of the actuator adjustment value is of great importance. First, the approximation relationship between the adjustment value and panel elastic deformation is established. Subsequently, a panel adjustment matrix for the whole reflector is derived to calculate the reflector deformation caused by the actuator adjustment. Next, the root mean square (rms) error of the deformed reflector is expressed as a quadratic form in the matrix form, and the adjustment value can be derived easily and promptly from the corresponding extreme value. The solution is expected to be unique and optimal since the aforementioned quadratic form is a convex function. Finally, a 35 m reflector antenna is adopted to perform the panel adjustments, and the effect of the adjustment errors is discussed. The results show that compared to the traditional model, where the panel elastic deformation is not considered, the proposed method exhibits a higher accuracy and is more suitable for use in large reflectors with a high operation frequency. The adjustment errors in different rings exert different influences on the gain and sidelobe level, which can help determine the actuator distribution with different precisions.
    • Parametric Study of Environmental Conditions on The Energy Harvesting Efficiency for The Multifunctional Composite Structures

      Wen, Tao; Ratner, Alon; Jia, Yu; Shi, Yu; University of Chester;University of Warwick; Aston University
      This paper presents a parametric study of the efficacy of an integrated vibration energy harvesting device under the environmental condition representative of an offshore wind turbine. A multifunctional glass fibre composite with an integrated Micro Fibre Composite (MFC) energy harvesting device was tested by swept sine vibration under environmental conditions that ranged from – 40°C to 70°C in temperature and 10%RH to 90%RH in humidity in order to characterise the sensitivity and dependence of energy harvesting on environmental conditions. Experimental vibration testing was complemented with theoretical analysis to investigate the relative contributions to the temperature dependence of energy harvesting. This included mechanical properties of the stiffness and strength of the cantilever structure and the electrical properties of the MFC transducer, including its dielectric constants and charge coefficients. An inverse proportionality was observed between the magnitude of harvested energy and the climatic temperature. The efficiency of energy harvesting was dominated by the stiffness of the cantilever, which displayed viscoelastic temperature dependence. The sample was also tested with a vibration profile obtained from a wind turbine in order to validate the temperature influence under typical service conditions. Numerical modal analysis was used to determine the shapes of resonance modes, the frequencies of which were temperature dependent. Humidity was observed to have a secondary influence on energy harvesting, with no significant short-term effect on the structural properties of the samples within the limits of the experimental method.
    • Piezoelectric vibration energy harvesting: A connection configuration scheme to increase operational range and output power

      Du, Sijun; Jia, Yu; Seshia, Ashwin A.; University of Cambridge; University of Chester (SAGE, 2016-12-12)
      For a conventional monolithic piezoelectric transducer (PT) using a full-bridge rectifier, there is a threshold voltage that the open-circuit voltage measured across the PT must attain prior to any transfer of energy to the storage capacitor at the output of the rectifier. This threshold voltage usually depends on the voltage of the storage capacitor and the forward voltage drop of diodes. This article presents a scheme of splitting the electrode of a monolithic piezoelectric vibration energy harvester into multiple (n) equal regions connected in series in order to provide a wider operating voltage range and higher output power while using a full-bridge rectifier as the interface circuit. The performance of different series stage numbers has been theoretically studied and experimentally validated. The number of series stages (n≥1n≥1) can be predefined for a particular implementation, which depends on the specified operating conditions, to achieve optimal performance. This enables the system to attain comparable performance compared to active interface circuits under an increased input range while no additional active circuits are required and the system is comparatively less affected by synchronized switching damping effect.
    • Predicting the critical heat flux in pool boiling based on hydrodynamic instability induced irreversible hot spots

      Zhao, Huayong; Williams, Andrew; Loughborough University; University of Chester (Elsevier, 2018-03-07)
      A new model, based on the experimental observation reported in the literature that CHF is triggered by the Irreversible Hot Spots (IHS), has been developed to predict the Critical Heat Flux (CHF) in pool boiling. The developed Irreversible Hot Spot (IHS) model can predict the CHF when boiling methanol on small flat surfaces and long horizontal cylinders of different sizes to within 5% uncertainty. It can also predict the effect of changing wettability (i.e. contact angle) on CHF to within 10% uncertainty for both hydrophilic and hydrophobic surfaces. In addition, a linear empirical correlation has been developed to model the bubble growth rate as a function of the system pressure. The IHS model with this linear bubble growth coefficient correlation can predict the CHF when boiling water on both flat surfaces and long horizontal cylinders to within 5% uncertainty up to 10 bar system pressure, and the CHF when boiling methanol on a flat surface to within 10% uncertainty up to 5 bar. The predicted detailed bubble grow and merge process from various sub-models are also in good agreement with the experimental results reported in the literature.
    • Rapid, Chemical-Free Generation of Optically Scattering Structures in Poly(ethylene terephthalate) Using a CO2 Laser for Lightweight and Flexible Photovoltaic Applications

      Academic Editor: Yan, Yanfa; Hodgson, Simon D.; Gillett, Alice R. (Hindawi, 2018-12-16)
      Highly light scattering structures have been generated in a poly(ethylene terephthalate) (PET) film using a CO2 laser. The haze, and in some cases the transparency, of the PET films have been improved by varying the processing parameters of the laser (namely, scanning velocity, laser output power, and spacing between processed tracks). When compared with the unprocessed PET, the haze has improved from an average value of 3.26% to a peak of 55.42%, which equates to an absolute improvement of 52.16% or a 17-fold increase. In addition to the optical properties, the surfaces have been characterised using optical microscopy and mapped with an optical profilometer. Key surface parameters that equate to the amount and structure of surface roughness and features have been analysed. The CO2 laser generates microstructures at high speed, without affecting the bulk properties of the material, and is inherently a chemical-free process making it particularly applicable for use in industry, fitting well with the high-throughput, roll to roll processes associated with the production of flexible organic photovoltaic devices.
    • Real-world evaluation of a self-startup SSHI rectifier for piezoelectric vibration energy harvesting

      Du, Sijun; Jia, Yu; Zhao, Chun; Chen, Shao-Tuan; Seshia, Ashwin A.; University of Cambridge; University of Chester (Elsevier, 2017-08-02)
      This paper presents an enhanced SSHI (synchronized switch harvesting on inductor) rectifier with startup circuit and representative environment validation using real world vibration data collected from a tram. Compared to a conventional SSHI rectifier, the proposed rectifier dynamically monitors the working status of the circuit and restarts it when necessary. The proposed rectifier is designed in a 0.35 μm HV CMOS process and its performance is experimentally evaluated. With a 500-second real-world collected vibration data, the conventional and the proposed SSHI rectifiers record average power performance improvements by 9.2× and 22× respectively, compared to a passive full-bridge rectifier. As the startup circuit helps restart the SSHI rectifier several times, it is able to extract energy in an increased excitation range and its average power output performance is 2.4× higher than a conventional SSHI rectifier.
    • A Review of Piezoelectric and Magnetostrictive Biosensor Materials for Detection of COVID‐19 and Other Viruses

      Narita, Fumio; Wang, Zhenjin; Kurita, Hiroki; Li, Zhen; Shi, Yu; Jia, Yu; Soutis, Constantinos; Tohoku University; Nanjing University of Aeronautics and Astronautics; University of Chester; Aston University; University of Manchester
      The spread of the severe acute respiratory syndrome coronavirus has changed the lives of people around the world with a huge impact on economies and societies. The development of wearable sensors that can continuously monitor the environment for viruses may become an important research area. Here, the state of the art of research on biosensor materials for virus detection is reviewed. A general description of the principles for virus detection is included, along with a critique of the experimental work dedicated to various virus sensors, and a summary of their detection limitations. The piezoelectric sensors used for the detection of human papilloma, vaccinia, dengue, Ebola, influenza A, human immunodeficiency, and hepatitis B viruses are examined in the first section; then the second part deals with magnetostrictive sensors for the detection of bacterial spores, proteins, and classical swine fever. In addition, progress related to early detection of COVID‐19 (coronavirus disease 2019) is discussed in the final section, where remaining challenges in the field are also identified. It is believed that this review will guide material researchers in their future work of developing smart biosensors, which can further improve detection sensitivity in monitoring currently known and future virus threats.
    • Rotary bistable and Parametrically Excited Vibration Energy Harvesting

      Kurmann, Lukas; Jia, Yu; Hoffmann, Daniel; Manoli, Yiannos; Woias, Peter; University of Applied Sciences and Arts Northwestern Switzerland; University of Chester; Hahn-Schickard; University of Freiburg (IOP Publishing, 2016-12-06)
      Parametric resonance is a type of nonlinear vibration phenomenon [1], [2] induced from the periodic modulation of at least one of the system parameters and has the potential to exhibit interesting higher order nonlinear behaviour [3]. Parametrically excited vibration energy harvesters have been previously shown to enhance both the power amplitude [4] and the frequency bandwidth [5] when compared to the conventional direct resonant approach. However, to practically activate the more profitable regions of parametric resonance, additional design mechanisms [6], [7] are required to overcome a critical initiation threshold amplitude. One route is to establish an autoparametric system where external direct excitation is internally coupled to parametric excitation [8]. For a coupled two degrees of freedom (DoF) oscillatory system, principal autoparametric resonance can be achieved when the natural frequency of the first DoF f1 is twice that of the second DoF f2 and the external excitation is in the vicinity of f1. This paper looks at combining rotary and translatory motion and use autoparametric resonance phenomena.
    • Shock Reliability Enhancement for MEMS Vibration Energy Harvesters with Nonlinear Air Damping as Soft Stopper

      Chen, Shao-Tuan; Du, Sijun; Arroyo, Emmanuelle; Jia, Yu; Seshia, Ashwin A.; University of Cambridge; University of Chester (IOP Publishing, 2017-09-20)
      This paper presents a novel application of utilising nonlinear air damping as soft mechanical stopper to increase the shock reliability for MEMS vibration energy harvesters. Theoretical framework for nonlinear air damping is constructed for MEMS vibration energy harvesters operating in different air pressure levels, and characterisation experiments are conducted to establish the relationship between air pressure and nonlinear air damping coefficient for rectangular cantilever MEMS micro cantilevers with different proof masses. Design guidelines on choosing the optimal air pressure level for different MEMS vibration energy harvesters based on the trade-off between harvestable energy and the device robustness is presented, and random excitation experiments are performed to verify the robustness of MEMS vibration energy harvesters with nonlinear air damping as soft stoppers to limit the maximum deflection distance and increase the shock reliability of the device.
    • Space Phased Array Antenna Developments: A Perspective on Structural Design

      Wang, Congsi; Wang, Yan; Lian, Peiyuan; Xu, Qian; Shi, Yu; Jia, Yu; Du, Biao; Liu, Jing; Tang, Baofu; Xue, Song; et al.
    • Surface adjustment strategy for a large radio telescope with adjustable dual reflectors

      Lian, Peiyuan; Wang, Congsi; Xue, Song; Xu, Qian; Shi, Yu; Jia, Yu; Xiang, Binbin; Wang, Yan; Yan, Yuefei; Xidian University; University of Chester; Chinese Academy of Sciences (IET, 2019-08-15)
      With the development of large-aperture and high-frequency radio telescopes, a surface adjustment procedure for the compensation of surface deformations has become of great importance. In this study, an innovative surface adjustment strategy is proposed to achieve an automated adjustment for the large radio telescope with adjustable dual reflectors. In the proposed strategy, a high-precision and long-distance measurement instrument is adopted and installed on the back of the sub-reflector to measure the distances and elevation angles of the target points on the main reflector. Here, two surface adjustment purposes are discussed. The first purpose is to ensure that the main reflector and sub-reflector are always positioned at their ideal locations during operation. The second purpose is to adjust the main reflector to the location of the best fitting reflector, and the sub-reflector to the focus of the best fitting reflector. Next, the calculation procedures for the adjustments of the main reflector and the sub-reflector are discussed in detail, and corresponding simulations are carried out to verify the proposed method. The results show that the proposed strategy is effective. This study can provide helpful guidance for the design of automated surface adjustments for large telescopes.
    • Surface glazing of concrete using lasers for protection and decommissioning

      Lawrence, Jonathan; Waugh, David G.; Shukla, Pratik; University of Chester (2015-01)
    • Surface treatments to modulate bioadhesion: A critical review

      Waugh, David G.; Toccaceli, Christina; Gillett, Alice R.; Ng, Chi-Ho; Hodgson, Simon D.; Lawrence, Jonathan; University of Chester (Scrivener Publishing, 2016-03-01)
      On account of the recent increase in importance of biological and microbiological adhesion in industries such as healthcare and food manufacturing many researchers are now turning to the study of materials, wettability and adhesion to develop the technology within these industries further. This is highly significant as the stem cell industry alone, for example, is currently worth £3.5 million in the United Kingdom (UK) alone. This paper reviews the current state-of-the-art techniques used for surface treatment with regards to modulating biological adhesion including laser surface treatment, plasma treatment, micro/nano printing and lithography, specifically highlighting areas of interest for further consideration by the scientific community. What is more, this review discusses the advantages and disadvantages of the current techniques enabling the assessment of the most attractive means for modulating biological adhesion, taking in to account cost effectiveness, complexity of equipment and capabilities for processing and analysis.
    • A Taylor-Surrogate-Model-Based Method for the Electrical Performance of Array Antennas Under Interval Position Errors

      Wang, Congsi; Yuan, Shuai; Gao, Wei; Jiang, Chao; Zhu, Cheng; Li, Peng; Wang, Zhihai; Peng, Xuelin; Shi, Yu; Xidian University; University of New South Wales; Hunan University; Nanjing Research Institute of Electronics Technology; University of Chester
      In this letter, a Taylor-surrogate-model-based method (TSMBM) is proposed to predict the bounds of power pattern of array antennas with interval position errors of antenna elements. The advantage of TSMBM is that it provides the approximate analytical solution of the problem with high precision and free of “wrapping effect.” First, the integral form of the Taylor surrogate model (IFTSM) of the distorted power pattern of array antennas is deduced. Then, the extrema point vector of IFTSM can be readily calculated within a set composed of bounds, –1 and 1. Finally, the bounds of the distorted power pattern are determined by submit- ting the extrema point vector of IFTSM to the distorted power pattern. Representative examples are presented to demonstrate the accuracy and effectiveness of the method.
    • Twenty-Eight Orders of Parametric Resonance in a Microelectromechanical Device for Multi-band Vibration Energy Harvesting

      Jia, Yu; Du, Sijun; Seshia, Ashwin A.; University of Cambridge; University of Chester (Nature Publishing Group, 2016-07-22)
      This paper contends to be the first to report the experimental observation of up to 28 orders of parametric resonance, which has thus far only been envisioned in the theoretical realm. While theory has long predicted the onset of n orders of parametric resonance, previously reported experimental observations have been limited up to about the first 5 orders. This is due to the rapid narrowing nature of the frequency bandwidth of the higher instability intervals, making practical accessibility increasingly more difficult. Here, the authors have experimentally confirmed up to 28 orders of parametric resonance in a micromachined membrane resonator when electrically undamped. While the implication of this finding spans across the vibration dynamics and transducer application spectrum, the particular significance of this work is to broaden the accumulative operational frequency bandwidth of vibration energy harvesting for enabling self-powered microsystems. Up to 5 orders were recorded when driven at 1.0g of acceleration across a matched load of 70kΩ. With a natural frequency of 980Hz, the fundamental mode direct resonance had a −3dB bandwidth of 55Hz, in contrast to the 314Hz for the first order parametric resonance; furthermore, the half power bands of all 5 orders accumulated to 478Hz.
    • Utilising Nonlinear Air Damping as a Soft Mechanical Stopper for MEMS Vibration Energy Harvesting

      Chen, Shao-Tuan; Du, Sijun; Arroyo, Emmanuelle; Jia, Yu; Seshia, Ashwin A.; University of Cambridge; University of Chester (IOP Publishing, 2016-12-06)
      This paper reports on the theory and experimental verification of utilising air damping as a soft stopper mechanism for piezoelectric vibration energy harvesting to enhance shock resistance. Experiments to characterise device responsiveness under various vibration conditions were performed at different air pressure levels, and a dimensionless model was constructed with nonlinear damping terms included to model PVEH response. The relationship between the quadratic damping coefficient ζ n and air pressure is empirically established, and an optimal pressure level is calculated to trade off harvestable energy and device robustness for specific environmental conditions.