• Laser melting of NiTi and its effects on in-vitro mesenchymal stem cell responses

      Waugh, David G.; Lawrence, Jonathan; Chan, Chi-Wai; Hussain, Issam; Man, Hau-Chung; University of Chester ; University of Chester ; University of Lincoln ; University of Lincoln ; Hong Kong Polytechnic University (Woodhead Publishing, 2014-10-14)
    • Laser sealing of HDLPE film to PP substrate

      Shukla, Pratik; Lawrence, Jonathan; Waugh, David G.; University of Chester (2015-01)
    • Laser surface engineering of polymeric materials and the effects on wettability characteristics

      Waugh, David G.; Avdic, Dalila; Woodham, K. J.; Lawrence, Jonathan; University of Lincoln (Scrivener/John Wiley & Sons., 2014-12-23)
      Wettability characteristics are believed by many to be the driving force in applications relating to adhesion. So, gaining an in-depth understanding of the wettability characteristics of materials before and after surface treatments is crucial in developing materials with enhanced adhesion properties. This chapter details some of the main competing techniques to laser surface engineering followed by a review of current cutting edge laser surface engineering techniques which are used for wettability and adhesion modulation. A study is provided in detail for laser surface treatment (using IR and UV lasers) of polymeric materials. Sessile drop analysis was used to determine the wettability characteristics of each laser surface treated sample and as-received sample, revealing the presence of a mixed-state wetting regime on some samples. Although this outcome does not follow current and accepted wetting theory, through numerical analysis, generic equations to predict this mixed state wetting regime and the corresponding contact angle are discussed.
    • Laser surface engineering: Processes and applications

      Waugh, David G.; Lawrence, Jonathan; University of Chester (Woodhead Publishing, 2014-10-14)
      Lasers can alter the surface composition and properties of materials in a highly controllable way, which makes them efficient and cost-effective tools for surface engineering. This book provides an overview of the different techniques, the laser-material interactions and the advantages and disadvantages for different applications.
    • Laser surface induced roughening of polymeric materials and the effects on Wettability characteristics

      Waugh, David G.; Lawrence, Jonathan; Shukla, Pratik; University of Chester (2015-01-15)
      It has been thoroughly demonstrated previously that lasers hold the ability to modulate surface properties of polymers with the result being utilization of such lasers in both research and industry. With increased applications of wettability techniques within industries there is greater need of predicting related characteristics, post laser processing, since such work evaluates the effectiveness of these surface treatments. This paper details the use of a Synrad CO2 laser marking system to surface roughen polymeric materials, namely: nylon 6,6; nylon 12, polytetrafluoroethylene (PTFE) and polyethylene (PE). These laser-modified surfaces have been analyzed using 3D surface profilometry to ascertain the surface roughness with the wettability characteristics obtained using a wettability goniometer. From the surface roughness results, for each of the samples, generic wettability characteristics arising from laser surface roughening is discussed.
    • Laser surface modification of polymeric materials for microbiological applications

      Gillett, Alice R.; Waugh, David G.; Lawrence, Jonathan; University of Chester (Elsevier, 2016-04-15)
    • Laser surface structuring of ceramics, metals and polymers for biological applications: A review

      Shukla, Pratik; Waugh, David G.; Lawrence, Jonathan; University of Chester (Elsevier, 2014-10-14)
    • Laser Surface Treatment of a Polymeric Biomaterial: Wettability Characteristics and Osteoblast Cell Response Modulation

      Waugh, David G.; Lawrence, Jonathan; University of Chester (Old City Publishing, 2014)
      Biotechnology has the potential to improve people's quality of life and holds the key to-many unmet clinical needs. In the UK alone the biotechnology market is worth £4.5 billion and estimates of future growth ranks from 10 to 15%. This growth can only be driven by the increased use of inexpensive and easy to manufacture polymeric biomaterials. Although polymer science is a rapidly developing area of research, it remains that one of the most intractable problems encountered in biotechnology is that the performance of polymeric biomaterials depends both upon the bulk and surface properties. In this book the authors describe Their work using lasers to modify the wettability characteristics of nylon 6,6 (as wetting often is the primary factor dictating the adhesion and bonding potential of materials) as a route to enhancing the area in terms of in vitro osteoblast cell response. What is more, modifying wettability characteristics in this way is shown to be a highly attractive means of estimating the biofunctionality of a polymer. The book demonstrates and explains how the generation of a biomimetic polymers and is surface using laser beams provides an in vitro platform on which to deposit and grow cells for either the development of implants or to reconstitute functional tissue. The correlative trends and generic characteristics which are identified are in the book between the laser treatment, wettability characteristics and osteoblast cell response of the nylon 6,6 provide a means to estimate the osteoblast cell response in vivo. The book shows clearly that laser surface modification of polymeric materials has tremendous potential for application within the field of regenerative medicine.
    • Laser surface treatment of polyamide and NiTi alloy and the effects on mesenchymal stem cell response

      Waugh, David G.; Lawrence, Jonathan; Shukla, Pratik; Chan, Chi-Wai; Hussain, Issam; Man, Hau-Chung; Smith, Graham C.; University of Chester ; University of Chester ; University of Chester ; Queen's University, Belfast ; University of Lincoln ; Hong Kong Polytechnic University ; University of Chester (2015-03-18)
      Mesenchymal stem cells (MSCs) are known to play important roles in development, post-natal growth, repair, and regeneration of mesenchymal tissues. What is more, surface treatments are widely reported to affect the biomimetic nature of materials. This paper will detail, discuss and compare laser surface treatment of polyamide (Polyamide 6,6), using a 60 W CO2 laser, and NiTi alloy, using a 100 W fiber laser, and the effects of these treatments on mesenchymal stem cell response. The surface morphology and composition of the polyamide and NiTi alloy were studied by scanning electron microscopy (SEM) and X-ray photoemission spectroscopy (XPS), respectively. MSC cell morphology cell counting and viability measurements were done by employing a haemocytometer and MTT colorimetric assay. The success of enhanced adhesion and spreading of the MSCs on each of the laser surface treated samples, when compared to as-received samples, is evidenced in this work.
    • Lateral crushing and bending responses of CFRP square tube filled with aluminum honeycomb

      Liu, Qiang; Xu, Xiyu; Ma, Jingbo; Wang, Jinsha; Shi, Yu; Hui, David; Sun Yat-Sen University; Hunan University; University of Chester; University of New Orleans (Elsevier, 2017-03-18)
      This paper aims to investigate the lateral planar crushing and bending responses of carbon fiber reinforced plastic (CFRP) square tube filled with aluminum honeycomb. The various failure modes and mechanical characteristics of filled tube were experimentally captured and numerically predicted by commercial finite element (FE) package LS-DYNA, comparing to the hollow tubes. The filled aluminum honeycomb effectively improved the stability of progressive collapse during crushing, leading to both hinges symmetrically occurred along the vertical side. The experimental results showed that energy absorbed (EA) and specific energy absorption (SEA) of the filled CFRP tubes could be significantly increased to 6.56 and 4 times, respectively, of those measured for the hollow tubes without fillings under lateral crushing. Although an improvement of 32% of EA and 0.9% of SEA were obtained for the lateral bending, still the design using aluminum honeycomb as filling was remarkably capable to improve the mechanical characteristics of CFRP tube structure. A good agreement was obtained between experimentally measured and numerically predicted load-displacement histories. The FE prediction was also helpful in understanding the initiation and propagation of cracks within the filled CFRP structure.
    • Low-velocity impact of composite laminates: damage evolution

      Shi, Yu; Pinna, Christophe; Soutis, Constantinos; University of Chester; University of Sheffield; University of Manchester (Woodhead Publishing, 2016-02-19)
      This chapter presents modelling procedures used to simulate damage evolution in composite laminates used in aircraft structures when subjected to low-energy-level impact (≤15 J). Damage models for both initiation and evolution are first introduced by considering the individual damage modes of composite laminates in the form of intra- and inter-laminar damage mechanisms. The implementation of these damage criteria into the user subroutine Vumat of the finite element code Abaqus is then described for the simulation of damage development during low-velocity impact tests. Finite element prediction is then compared to experimental load-time measurements and damage extent obtained using X-rays as a non-destructive technique (NDT). Further development of the model is then presented by simulating matrix cracking evolution and splitting using a fracture mechanics-based criterion approach implemented into a cohesive zone element (CZE) formulation. Results from the extended model show clear improvement in terms of the accuracy of damage prediction, with experimental observations of the damage modes operating at ply-level providing further validation of the model. This can be used at an early stage of the design process of optimising laminate configurations used in aircraft structural applications.
    • Magnetically levitated autoparametric broadband vibration energy harvesting

      Kurmann, Lukas; Jia, Yu; Manoli, Yiannos; Woias, Peter; University of Applied Sciences and Arts Northwestern Switzerland; University of Chester; University of Freiburg (IOP Publishing, 2016-12-06)
      Some of the lingering challenges within the current paradigm of vibration energy harvesting (VEH) involve narrow operational frequency range and the inevitable non-resonant response from broadband noise excitations. Such VEHs are only suitable for limited applications with fixed sinusoidal vibration, and fail to capture a large spectrum of the real world vibration. Various arraying designs, frequency tuning schemes and nonlinear vibratory approaches have only yielded modest enhancements. To fundamentally address this, the paper proposes and explores the potentials in using highly nonlinear magnetic spring force to activate an autoparametric oscillator, in order to realize an inherently broadband resonant system. Analytical and numerical modelling illustrate that high spring nonlinearity derived from magnetic levitation helps to promote the 2:1 internal frequency matching required to activate parametric resonance. At the right internal parameters, the resulting system can intrinsically exhibit semi-resonant response regardless of the bandwidth of the input vibration, including broadband white noise excitation.
    • Maximizing Output Power in a Cantilevered Piezoelectric Vibration Energy Harvester by Electrode Design

      Du, Sijun; Jia, Yu; Seshia, Ashwin A.; University of Cambridge; University of Chester (IOP Publishing, 2015-12-01)
      A resonant vibration energy harvester typically comprises of a clamped anchor and a vibrating shuttle with a proof mass. Piezoelectric materials are embedded in locations of high strain in order to transduce mechanical deformation into electric charge. Conventional design for piezoelectric vibration energy harvesters (PVEH) usually utilizes piezoelectric material and metal electrode layers covering the entire surface area of the cantilever with no consideration provided to examining the trade-off involved with respect to maximizing output power. This paper reports on the theory and experimental verification underpinning optimization of the active electrode area of a cantilevered PVEH in order to maximize output power. The analytical formulation utilizes Euler-Bernoulli beam theory to model the mechanical response of the cantilever. The expression for output power is reduced to a fifth order polynomial expression as a function of the electrode area. The maximum output power corresponds to the case when 44% area of the cantilever is covered by electrode metal. Experimental results are also provided to verify the theory.
    • Micromachined cantilevers-on-membrane topology for broadband vibration energy harvesting

      Jia, Yu; Du, Sijun; Seshia, Ashwin A.; University of Cambridge; University of Chester (IOP Publishing, 2016-10-17)
      The overwhelming majority of microelectromechanical piezoelectric vibration energy harvesting topologies have been based on cantilevers, doubly-clamped beams or basic membranes. While these conventional designs offer simplicity, their broadband responses have been limited thus far. This paper investigates the feasibility of a new integrated cantilevers-on-membrane design that explores the optimisation of piezoelectric strain distribution and improvement of the broadband power output. While a classic membrane has the potential to offer a broader resonant peak than its cantilever counterpart, the inclusion of a centred proof mass compromises its otherwise high strain energy regions. The proposed topology addresses this issue by relocating the proof mass onto subsidiary cantilevers and combines the merits of both the membrane and the cantilever designs. Numerical simulations, constructed using fitted values based on finite element models, were used to investigate the broadband response of the proposed design in contrast to a classic plain membrane. Experimentally, when subjected to a band-limited white noise excitation, the new cantilevers-on-membrane harvester exhibited nearly two fold power output enhancement when compared to a classic plain membrane harvester of a comparable size.
    • A micromachined device describing over a hundred orders of parametric resonance

      Jia, Yu; Du, Sijun; Arroyo, Emmanuelle; Seshia, Ashwin A.; University of Cambridge; University of Chester (AIP Publishing, 2018-04-24)
      Parametric resonance in mechanical oscillators can onset from the periodic modulation of at least one of the system parameters, and the behaviour of the principal (1st order) parametric resonance has long been well established. However, the theoretically predicted higher orders of parametric resonance, in excess of the first few orders, have mostly been experimentally elusive due to the fast diminishing instability intervals. A recent paper experimentally reported up to 28 orders in a micromachined membrane oscillator. This paper reports the design and characterisation of a micromachined membrane oscillator with a segmented proof mass topology, in an attempt to amplify the inherent nonlinearities within the membrane layer. The resultant oscillator device exhibited up to over a hundred orders of parametric resonance, thus experimentally validating these ultra-high orders as well as overlapping instability transitions between these higher orders. This research introduces design possibilities for the transducer and dynamic communities, by exploiting the behaviour of these previously elusive higher order resonant regimes.
    • Modelling impact damage in composite laminates: A simulation of intra- and inter-laminar cracking

      Pinna, Christophe; Soutis, Constantinos; Shi, Yu; University of Chester; University of Sheffield; University of Manchester (Elsevier, 2014-04-12)
      In this work, stress- and fracture mechanics-based criteria are developed to predict initiation and evolution, respectively, of intra- and inter-laminar cracking developed in composite laminates subjected to a relatively low energy impact (⩽15 J) with consideration of nonlinear shear behaviour. The damage model was implemented in the finite element (FE) code (Abaqus/Explicit) through a user-defined material subroutine (VUMAT). Delamination (or inter-laminar cracking) was modelled using interface cohesive elements while splitting and transverse matrix cracks (intralaminar cracking) that appeared within individual plies were also simulated by inserting cohesive elements along the fibre direction (at a crack spacing determined from experiments for computing efficiency). A good agreement is obtained when the numerically predicted results are compared to both experimentally obtained curves of impact force and absorbed energy versus time and X-ray radiography damage images, provided the interface element stiffness is carefully selected. This gives confidence to selected fracture criteria and assists to identify material fracture parameters that influence damage resistance of modern composite material systems.
    • Modelling low velocity impact induced damage in composite laminates

      Shi, Yu; Soutis, Constantinos; University of Chester; University of Manchester (SpringerOpen, 2017-07-26)
      The paper presents recent progress on modelling low velocity impact induced damage in fibre reinforced composite laminates. It is important to understand the mechanisms of barely visible impact damage (BVID) and how it affects structural performance. To reduce labour intensive testing, the development of finite element (FE) techniques for simulating impact damage becomes essential and recent effort by the composites research community is reviewed in this work. The FE predicted damage initiation and propagation can be validated by Non Destructive Techniques (NDT) that gives confidence to the developed numerical damage models. A reliable damage simulation can assist the design process to optimise laminate configurations, reduce weight and improve performance of components and structures used in aircraft construction.
    • Modelling low velocity impact induced damage in composite laminates

      Shi, Yu; Soutis, Constantinos; University of Chester; University of Manchester (Springer, 2017-07-26)
      The paper presents recent progress on modelling low velocity impact induced damage in fibre reinforced composite laminates. It is important to understand the mechanisms of barely visible impact damage (BVID) and how it affects structural performance. To reduce labour intensive testing, the development of finite element (FE) techniques for simulating impact damage becomes essential and recent effort by the composites research community is reviewed in this work. The FE predicted damage initiation and propagation can be validated by Non Destructive Techniques (NDT) that gives confidence to the developed numerical damage models. A reliable damage simulation can assist the design process to optimise laminate configurations, reduce weight and improve performance of components and structures used in aircraft construction.
    • Modelling transverse matrix cracking and splitting of cross-ply composite laminates under four point bending

      Shi, Yu; Soutis, Constantinos; University of Chester; University of Manchester (Elsevier, 2015-11-30)
      The transverse matrix cracking and splitting in a cross-ply composite laminate has been modelled using the finite element (FE) method with the commercial code Abaqus/Explicit 6.10. The equivalent constraint model (ECM) developed by Soutis et al. has been used for the theoretical prediction of matrix cracking and results have been compared to those obtained experimentally and numerically. A stress-based traction–separation law has been used to simulate the initiation of matrix cracks and their growth under mixed-mode loading. Cohesive elements have been inserted between the interfaces of every neighbouring element along the fibre orientation for all 0° and 90° plies to predict the matrix cracking and splitting at predetermined crack spacing based on experimental observations. Good agreement is obtained between experimental and numerical crack density profiles for different 90° plies. In addition, different mechanisms of matrix cracking and growth processes were captured and splitting was also simulated in the bottom 0° ply by the numerical model.
    • Modifications of surface properties of beta Ti by laser gas diffusion nitriding

      Ng, Chi-Ho; Chan, Chi-Wai; Man, Hau-Chung; Waugh, David G.; Lawrence, Jonathan; University of Chester; Queen's University; The Hong Kong Polytechnic University (AIP Publishing, 2016-03-31)
      b-type Ti-alloy is a promising biomedical implant material as it has a low Young’s modulus and is also known to have inferior surface hardness. Various surface treatments can be applied to enhance the surface hardness. Physical vapor deposition and chemical vapor deposition are two examples of this but these techniques have limitations such as poor interfacial adhesion and high distortion. Laser surface treatment is a relatively new surface modification method to enhance the surface hardness but its application is still not accepted by the industry. The major problem of this process involves surface melting which results in higher surface roughness after the laser surface treatment.This paper will report the results achieved by a 100W CW fiber laser for laser surface treatment without the surface being melted. Laser processing parameters were carefully selected so that the surface could be treated without surface melting and thus the surface finish of the component could be maintained. The surface and microstructural characteristics of the treated samples were examined using x-ray diffractometry, optical microscopy, three-dimensional surface profile and contact angle measurements, and nanoindentation test.