• Optimisation and management of energy generated by a multifunctional MFC-integrated composite chassis for rail vehicles

      Liu, Yiding; Du, Sijun; Micallef, Christopher; Jia, Yu; Shi, Yu; Hughes, Darren; University of Warwick; University of California at Berkeley; Aston University; University of Chester
      With the advancing trend towards lighter and faster rail transport, there is an increasing interest in integrating composite and advanced multifunctional materials in order to infuse smart sensing and monitoring, energy harvesting and wireless capabilities within the otherwise purely mechanical rail structures and the infrastructure. This paper presents a holistic multiphysics numerical study, across both mechanical and electrical domains, that describes an innovative technique of harvesting energy from a piezoelectric micro fiber composites (MFC) built-in composite rail chassis structure. Representative environmental vibration data measured from a rail cabin have been critically leveraged here to help predict the actual vibratory and power output behaviour under service. Time domain mean stress distribution data from the Finite Element simulation were used to predict the raw AC voltage output of the MFCs. Conditioned power output was then calculated using circuit simulation of several state-of-the-art power conditioning circuits. A peak instantaneous rectified power of 181.9 mW was obtained when eight-stage Synchronised Switch Harvesting Capacitors (SSHC) from eight embedded MFCs were located. The results showed that the harvested energy could be sufficient to sustain a self-powered structural health monitoring system with wireless communication capabilities. This study serves as a theoretical foundation of scavenging for vibrational power from the ambient state in a rail environment as well as to pointing to design principles to develop regenerative and power neutral smart vehicles.
    • Vibration energy harvesting of multifunctional carbon fibre composite laminate structures

      Alsaadi, Ahmed; Shi, Yu; Pan, Lei; Tao, Jie; Jia, Yu; University of Chester; Nanjing University of Aeronautics and Astronautics
      A sustainable power supply for a wide range of applications, such as powering sensors for structural health monitoring and wireless sensoring nodes for data transmission and communication used in unmanned air vehicles, automobiles, renewable energy sectors, and smart city technologies, is targeted. This paper presents an experimental and numerical study that describes an innovative technique to harvest energy resulted from environmental vibrations. A piezoelectric energy harvester was integrated onto a carbon fibre reinforced polymer (CFRP) laminate structure using the co-curing method. The integrated composite with the energy harvester was lightweight, flexible and provided robust and reliable energy outcomes, which can be used to power different low-powered wireless sensing nodes. A normalised power density of 97  μW cm−3m−2s4 was obtained from resonance frequency of 46 Hz sinusoidal waves at amplitude of 0.2 g; while the representative environmental vibration waves in various applications (aerospace, automotive, machine and bridge infrastructure) were experimentally and numerically investigated to find out the energy that can be harvested by such a multifunctional composite structure. The results showed the energy harvested at different vibration input from various industrial sectors could be sufficient to power an autonomous structural health monitoring system and wireless communications by the designed composite structure.