• Interface Cohesive Elements to Model Matrix Crack Evolution in Composite Laminates

      Shi, Yu; Pinna, Christophe; Soutis, Constantinos; University of Chester; University of Sheffield; University of Manchester (Springer, 2013-10-02)
      In this paper, the transverse matrix (resin) cracking developed in multidirectional composite laminates loaded in tension was numerically investigated by a finite element (FE) model implemented in the commercially available software Abaqus/Explicit 6.10. A theoretical solution using the equivalent constraint model (ECM) of the damaged laminate developed by Soutis et al. was employed to describe matrix cracking evolution and compared to the proposed numerical approach. In the numerical model, interface cohesive elements were inserted between neighbouring finite elements that run parallel to fibre orientation in each lamina to simulate matrix cracking with the assumption of equally spaced cracks (based on experimental measurements and observations). The stress based traction-separation law was introduced to simulate initiation of matrix cracking and propagation under mixed-mode loading. The numerically predicted crack density was found to depend on the mesh size of the model and the material fracture parameters defined for the cohesive elements. Numerical predictions of matrix crack density as a function of applied stress are in a good agreement to experimentally measured and theoretically (ECM) obtained values, but some further refinement will be required in near future work.
    • Modelling impact damage in composite laminates: A simulation of intra- and inter-laminar cracking

      Pinna, Christophe; Soutis, Constantinos; Shi, Yu; University of Chester; University of Sheffield; University of Manchester (Elsevier, 2014-04-12)
      In this work, stress- and fracture mechanics-based criteria are developed to predict initiation and evolution, respectively, of intra- and inter-laminar cracking developed in composite laminates subjected to a relatively low energy impact (⩽15 J) with consideration of nonlinear shear behaviour. The damage model was implemented in the finite element (FE) code (Abaqus/Explicit) through a user-defined material subroutine (VUMAT). Delamination (or inter-laminar cracking) was modelled using interface cohesive elements while splitting and transverse matrix cracks (intralaminar cracking) that appeared within individual plies were also simulated by inserting cohesive elements along the fibre direction (at a crack spacing determined from experiments for computing efficiency). A good agreement is obtained when the numerically predicted results are compared to both experimentally obtained curves of impact force and absorbed energy versus time and X-ray radiography damage images, provided the interface element stiffness is carefully selected. This gives confidence to selected fracture criteria and assists to identify material fracture parameters that influence damage resistance of modern composite material systems.
    • Optimisation and management of energy generated by a multifunctional MFC-integrated composite chassis for rail vehicles

      Liu, Yiding; Du, Sijun; Micallef, Christopher; Jia, Yu; Shi, Yu; Hughes, Darren; University of Warwick; University of California at Berkeley; Aston University; University of Chester
      With the advancing trend towards lighter and faster rail transport, there is an increasing interest in integrating composite and advanced multifunctional materials in order to infuse smart sensing and monitoring, energy harvesting and wireless capabilities within the otherwise purely mechanical rail structures and the infrastructure. This paper presents a holistic multiphysics numerical study, across both mechanical and electrical domains, that describes an innovative technique of harvesting energy from a piezoelectric micro fiber composites (MFC) built-in composite rail chassis structure. Representative environmental vibration data measured from a rail cabin have been critically leveraged here to help predict the actual vibratory and power output behaviour under service. Time domain mean stress distribution data from the Finite Element simulation were used to predict the raw AC voltage output of the MFCs. Conditioned power output was then calculated using circuit simulation of several state-of-the-art power conditioning circuits. A peak instantaneous rectified power of 181.9 mW was obtained when eight-stage Synchronised Switch Harvesting Capacitors (SSHC) from eight embedded MFCs were located. The results showed that the harvested energy could be sufficient to sustain a self-powered structural health monitoring system with wireless communication capabilities. This study serves as a theoretical foundation of scavenging for vibrational power from the ambient state in a rail environment as well as to pointing to design principles to develop regenerative and power neutral smart vehicles.