• A Compensation Method for Active Phased Array Antennas : Using a Strain-Electromagnetic Coupling Model

      Shi, Yu; Wang, Congsi; Wang, Yan; Yuan, Shuai; Duan, Baoyan; Lian, Peiyuan; Xue, Song; Du, Biao; Gao, Wei; Wang, Zhihai; et al.
      Physical deformation due to service loads seriously degrades the electromagnetic performance of active phased array antennas. However, traditional displacement-based compensation methods are moderately difficult to use because displacement measurements generally require stable references, which are hard to realize for antennas in service. For deformed antennas, strain information is directly related to their displacement, and strain sensors can overcome carrier platform constraints to measure real-time strain without affecting the antenna radiation-field distribution. We thus present a compensation method based on strain information for in-service antennas. First, the minimum number of strain sensors is determined as the main modal-order-based modal effective mass fraction. According to the modal method and analysis of spatial phase-distribution errors related to strain, a coupled strain-electromagnetic model is established to evaluate antenna performance from the measured strain. The corresponding excitation phase from the measured strain is adjusted to compensate antenna performance. Finally, the method is experimentally validated using an X-band active phased array antenna under the influence of typical deformation conditions for both boresightand scanned beams. The results demonstrate that the presented method can effectively compensate for the performance of service antennas directly from the measured strain information.
    • A Taylor-Surrogate-Model-Based Method for the Electrical Performance of Array Antennas Under Interval Position Errors

      Wang, Congsi; Yuan, Shuai; Gao, Wei; Jiang, Chao; Zhu, Cheng; Li, Peng; Wang, Zhihai; Peng, Xuelin; Shi, Yu; Xidian University; University of New South Wales; Hunan University; Nanjing Research Institute of Electronics Technology; University of Chester
      In this letter, a Taylor-surrogate-model-based method (TSMBM) is proposed to predict the bounds of power pattern of array antennas with interval position errors of antenna elements. The advantage of TSMBM is that it provides the approximate analytical solution of the problem with high precision and free of “wrapping effect.” First, the integral form of the Taylor surrogate model (IFTSM) of the distorted power pattern of array antennas is deduced. Then, the extrema point vector of IFTSM can be readily calculated within a set composed of bounds, –1 and 1. Finally, the bounds of the distorted power pattern are determined by submit- ting the extrema point vector of IFTSM to the distorted power pattern. Representative examples are presented to demonstrate the accuracy and effectiveness of the method.