• The diagnostic analysis of the fault coupling effects in planet bearing

      Xue, Song; Wang, Congsi; Howard, Ian; Lian, Peiyuan; Chen, Gaige; Wang, yan; Yan, Yuefei; Xu, Qian; Shi, Yu; Jia, Yu; et al. (Elsevier, 2019-11-09)
      The purpose of this paper is to investigate the fault coupling effects in the planet bearing as well as the corresponding vibration signatures in the resultant vibration spectrum. In a planetary gear application, the planet bearing can not only spin around the planet gear axis, but also revolve about the sun gear axis and this rotating mechanism poses a big challenge for the diagnostic analysis of the planet bearing vibration spectrum. In addition, the frequency component interaction and overlap phenomenon in the vibration spectrum caused by the fault coupling effect can even worsen the diagnosis results. To further the understanding of the fault coupling effects in a planet bearing, a 34° of freedom planetary gear model with detailed planet bearing model was established to obtain the dynamic response in the presence of various bearing fault scenarios. The method of modelling the bearing distributed faults and localized faults has been introduced in this paper, which can be further incorporated into the planetary gear model to obtain the faulted vibration signal. The “benchmark” method has been adopted to enhance the planet bearing fault impulses in the vibration signals and in total, the amplitude demodulation results from 20 planet bearing fault scenarios have been investigated and analyzed. The coherence estimation over the vibration frequency domain has been proposed as a tool to quantify the fault impact contribution from different fault modes and the results suggested that the outer raceway fault contributes most to the resultant planet bearing vibration spectrum in all the investigated fault scenarios.
    • Panel adjustment and error analysis for a large active main reflector antenna by using the panel adjustment matrix

      Lian, Peiyuan; Wang, Congsi; Xue, Song; Xu, Qian; Wang, Na; xiang, Binbin; Shi, Yu; Jia, Yu; Xidian University; University of Chester; Aston University; Chinese Academy of Sciences
      Active panels are generally applied in large aperture and high frequency reflector antennas, and the precise calculation of the actuator adjustment value is of great importance. First, the approximation relationship between the adjustment value and panel elastic deformation is established. Subsequently, a panel adjustment matrix for the whole reflector is derived to calculate the reflector deformation caused by the actuator adjustment. Next, the root mean square (rms) error of the deformed reflector is expressed as a quadratic form in the matrix form, and the adjustment value can be derived easily and promptly from the corresponding extreme value. The solution is expected to be unique and optimal since the aforementioned quadratic form is a convex function. Finally, a 35 m reflector antenna is adopted to perform the panel adjustments, and the effect of the adjustment errors is discussed. The results show that compared to the traditional model, where the panel elastic deformation is not considered, the proposed method exhibits a higher accuracy and is more suitable for use in large reflectors with a high operation frequency. The adjustment errors in different rings exert different influences on the gain and sidelobe level, which can help determine the actuator distribution with different precisions.