• Design and finite element simulation of metal-core piezoelectric fiber/epoxy matrix composites for virus detection

      Wang, Yinli; Shi, Yu; Narita, Fumio; Tohoku University; University of Chester
      Undoubtedly, the coronavirus disease 2019 (COVID-19) has received the greatest concern with a global impact, and this situation will continue for a long period of time. Looking back in history, airborne transimission diseases have caused huge casualties several times. COVID-19 as a typical airborne disease caught our attention and reminded us of the importance of preventing such diseases. Therefore, this study focuses on finding a new way to guard against the spread of these diseases such as COVID-19. This paper studies the dynamic electromechanical response of metal-core piezoelectric fiber/epoxy matrix composites, designed as mass load sensors for virus detection, by numerical modelling. The dynamic electromechanical response is simulated by applying an alternating current (AC) electric field to make the composite vibrate. Furthermore, both concentrated and distributed loads are considered to assess the sensitivity of the biosensor during modelling of the combination of both biomarker and viruses. The design parameters of this sensor, such as the resonant frequency, the position and size of the biomarker, will be studied and optimized as the key values to determine the sensitivity of detection. The novelty of this work is to propose functional composites that can detect the viruses from changes of the output voltage instead of the resonant frequency change using piezoelectric sensor and piezoelectric actuator. The contribution of this detection method will significantly shorten the detection time as it avoids fast Fourier transform (FFT) or discrete Fourier transform (DFT). The outcome of this research offers a reliable numerical model to optimize the design of the proposed biosensor for virus detection, which will contribute to the production of high-performance piezoelectric biosensors in the future.
    • A Review of Piezoelectric and Magnetostrictive Biosensor Materials for Detection of COVID‐19 and Other Viruses

      Narita, Fumio; Wang, Zhenjin; Kurita, Hiroki; Li, Zhen; Shi, Yu; Jia, Yu; Soutis, Constantinos; Tohoku University; Nanjing University of Aeronautics and Astronautics; University of Chester; Aston University; University of Manchester
      The spread of the severe acute respiratory syndrome coronavirus has changed the lives of people around the world with a huge impact on economies and societies. The development of wearable sensors that can continuously monitor the environment for viruses may become an important research area. Here, the state of the art of research on biosensor materials for virus detection is reviewed. A general description of the principles for virus detection is included, along with a critique of the experimental work dedicated to various virus sensors, and a summary of their detection limitations. The piezoelectric sensors used for the detection of human papilloma, vaccinia, dengue, Ebola, influenza A, human immunodeficiency, and hepatitis B viruses are examined in the first section; then the second part deals with magnetostrictive sensors for the detection of bacterial spores, proteins, and classical swine fever. In addition, progress related to early detection of COVID‐19 (coronavirus disease 2019) is discussed in the final section, where remaining challenges in the field are also identified. It is believed that this review will guide material researchers in their future work of developing smart biosensors, which can further improve detection sensitivity in monitoring currently known and future virus threats.