• Development of laser peening ceramics

      Shukla, Pratik; Lawrence, Jonathan; Waugh, David G.; University of Chester (2015-03)
    • Effect of laser treatment on the attachment and viability of mesenchymal stem cell responses on shape memory NiTi alloy

      Chan, Chi-Wai; Hussain, Issam; Waugh, David G.; Lawrence, Jonathan; Man, Hau-Chung; Queen's University, Belfast ; University of Lincoln ; University of Chester ; University of Chester ; Hong Kong Polytechnic University (Elsevier, 2014-05-22)
      The objectives of this study were to investigate the effect of laser-induced surface features on the morphology, attachment and viability of mesenchymal stem cells (MSCs) at different periods of time, and to evaluate the biocompatibility of different zones: laser-melted zone (MZ), heat-affected zone (HAZ) and base metal (BM) in laser-treated NiTi alloy.
    • High speed CO2 laser surface modification of iron/cobalt co-doped boroaluminosilicate glass

      Hodgson, Simon D.; Waugh, David G.; Gillett, Alice R.; Lawrence, Jonathan; University of Chester (IOP Publishing, 2016-06-10)
      A preliminary study into the impact of high speed laser processing on the surface of iron and cobalt co-doped glass substrates using a 60 W continuous wave (cw) CO2 laser. Two types of processing, termed fill-processing and line-processing, were trialled. In fill-processed samples the surface roughness of the glass was found to increase linearly with laser power from an Sa value of 20.8 nm–2.1 μm at a processing power of 54 W. With line processing, a more exponential-like increase was observed with a roughness of 4 μm at 54 W. The change in surface properties of the glass, such as gloss and wettability, have also been measured. The contact angle of water was found to increase after laser processing by up to 64°. The surface gloss was varied between 45 and 100 gloss units (GUs).
    • In vitro mesenchymal stem cell response to a CO2 laser modified polymeric material

      Waugh, David G.; Hussain, Issam; Lawrence, Jonathan; Smith, Graham C.; Toccaceli, Christina; University of Chester; University of Lincoln (Elsevier, 2016-05-16)
      With an ageing world population it is becoming significantly apparent that there is a need to produce implants and platforms to manipulate stem cell growth on a pharmaceutical scale. This is needed to meet the socio-economic demands of many countries worldwide. This paper details one of the first ever studies in to the manipulation of stem cell growth on CO2 laser surface treated nylon 6,6 highlighting its potential as an inexpensive platform to manipulate stem cell growth on a pharmaceutical scale. Through CO2 laser surface treatment discrete changes to the surfaces were made. That is, the surface roughness of the nylon 6,6 was increased by up to 4.3 µm, the contact angle was modulated by up to 5° and the surface oxygen content increased by up to 1 atom%. Following mesenchymal stem cell growth on the laser treated samples, it was identified that CO2 laser surface treatment gave rise to an enhanced response with an increase in viable cell count of up to 60,000 cells/ml when compared to the as-received sample. The effect of surface parameters modified by the CO2 laser surface treatment on the mesenchymal stem cell response is also discussed along with potential trends that could be identified to govern the mesenchymal stem cell response.
    • Influencing the attachment of bacteria through laser surface engineering

      Gillett, Alice R.; Waugh, David G.; Lawrence, Jonathan; University of Chester (Laser Institute of America, 2015-10-31)
      Bacteria have evolved to become proficient at adapting to both extracellular and environmental conditions, which has made it possible for them to attach and subsequently form biofilms on varying surfaces. This has resulted in major health concerns and economic burden in both hospital and industrial environments. Surfaces which prevent this bacterial fouling through their physical structure represent a key area of research for the development of antibacterial surfaces for many different environments. Laser surface treatment provides a potential candidate for the production of anti-biofouling surfaces for wide ranging surface applications within healthcare and industrial disciplines. In the present study, a KrF 248 nm Excimer laser was utilized to surface pattern Polyethylene terephthalate (PET). The surface topography and roughness were determined with the use of a Micromeasure 2, 3D profiler. Escherichia coli (E. coli) growth was analysed at high shear flow using a CDC Biofilm reactor for 48 hours, scanning electron microscopy was used to determine morphology and total viable counts were made. Through this work it has been shown that the surface modification significantly influenced the distribution and morphology of the attached E. coli cells. What is more, it has been evidenced that the laser-modified PET has been shown to prevent E. coli cells from attaching themselves within the laser-induced micro-surface-features.
    • Laser melting of NiTi and its effects on in-vitro mesenchymal stem cell responses

      Waugh, David G.; Lawrence, Jonathan; Chan, Chi-Wai; Hussain, Issam; Man, Hau-Chung; University of Chester ; University of Chester ; University of Lincoln ; University of Lincoln ; Hong Kong Polytechnic University (Woodhead Publishing, 2014-10-14)
    • Laser sealing of HDLPE film to PP substrate

      Shukla, Pratik; Lawrence, Jonathan; Waugh, David G.; University of Chester (2015-01)
    • Laser surface engineering of polymeric materials and the effects on wettability characteristics

      Waugh, David G.; Avdic, Dalila; Woodham, K. J.; Lawrence, Jonathan; University of Lincoln (Scrivener/John Wiley & Sons., 2014-12-23)
      Wettability characteristics are believed by many to be the driving force in applications relating to adhesion. So, gaining an in-depth understanding of the wettability characteristics of materials before and after surface treatments is crucial in developing materials with enhanced adhesion properties. This chapter details some of the main competing techniques to laser surface engineering followed by a review of current cutting edge laser surface engineering techniques which are used for wettability and adhesion modulation. A study is provided in detail for laser surface treatment (using IR and UV lasers) of polymeric materials. Sessile drop analysis was used to determine the wettability characteristics of each laser surface treated sample and as-received sample, revealing the presence of a mixed-state wetting regime on some samples. Although this outcome does not follow current and accepted wetting theory, through numerical analysis, generic equations to predict this mixed state wetting regime and the corresponding contact angle are discussed.
    • Laser surface engineering: Processes and applications

      Waugh, David G.; Lawrence, Jonathan; University of Chester (Woodhead Publishing, 2014-10-14)
      Lasers can alter the surface composition and properties of materials in a highly controllable way, which makes them efficient and cost-effective tools for surface engineering. This book provides an overview of the different techniques, the laser-material interactions and the advantages and disadvantages for different applications.
    • Laser surface induced roughening of polymeric materials and the effects on Wettability characteristics

      Waugh, David G.; Lawrence, Jonathan; Shukla, Pratik; University of Chester (2015-01-15)
      It has been thoroughly demonstrated previously that lasers hold the ability to modulate surface properties of polymers with the result being utilization of such lasers in both research and industry. With increased applications of wettability techniques within industries there is greater need of predicting related characteristics, post laser processing, since such work evaluates the effectiveness of these surface treatments. This paper details the use of a Synrad CO2 laser marking system to surface roughen polymeric materials, namely: nylon 6,6; nylon 12, polytetrafluoroethylene (PTFE) and polyethylene (PE). These laser-modified surfaces have been analyzed using 3D surface profilometry to ascertain the surface roughness with the wettability characteristics obtained using a wettability goniometer. From the surface roughness results, for each of the samples, generic wettability characteristics arising from laser surface roughening is discussed.
    • Laser surface modification of polymeric materials for microbiological applications

      Gillett, Alice R.; Waugh, David G.; Lawrence, Jonathan; University of Chester (Elsevier, 2016-04-15)
    • Laser surface structuring of ceramics, metals and polymers for biological applications: A review

      Shukla, Pratik; Waugh, David G.; Lawrence, Jonathan; University of Chester (Elsevier, 2014-10-14)
    • Laser Surface Treatment of a Polymeric Biomaterial: Wettability Characteristics and Osteoblast Cell Response Modulation

      Waugh, David G.; Lawrence, Jonathan; University of Chester (Old City Publishing, 2014)
      Biotechnology has the potential to improve people's quality of life and holds the key to-many unmet clinical needs. In the UK alone the biotechnology market is worth £4.5 billion and estimates of future growth ranks from 10 to 15%. This growth can only be driven by the increased use of inexpensive and easy to manufacture polymeric biomaterials. Although polymer science is a rapidly developing area of research, it remains that one of the most intractable problems encountered in biotechnology is that the performance of polymeric biomaterials depends both upon the bulk and surface properties. In this book the authors describe Their work using lasers to modify the wettability characteristics of nylon 6,6 (as wetting often is the primary factor dictating the adhesion and bonding potential of materials) as a route to enhancing the area in terms of in vitro osteoblast cell response. What is more, modifying wettability characteristics in this way is shown to be a highly attractive means of estimating the biofunctionality of a polymer. The book demonstrates and explains how the generation of a biomimetic polymers and is surface using laser beams provides an in vitro platform on which to deposit and grow cells for either the development of implants or to reconstitute functional tissue. The correlative trends and generic characteristics which are identified are in the book between the laser treatment, wettability characteristics and osteoblast cell response of the nylon 6,6 provide a means to estimate the osteoblast cell response in vivo. The book shows clearly that laser surface modification of polymeric materials has tremendous potential for application within the field of regenerative medicine.
    • Laser surface treatment of polyamide and NiTi alloy and the effects on mesenchymal stem cell response

      Waugh, David G.; Lawrence, Jonathan; Shukla, Pratik; Chan, Chi-Wai; Hussain, Issam; Man, Hau-Chung; Smith, Graham C.; University of Chester ; University of Chester ; University of Chester ; Queen's University, Belfast ; University of Lincoln ; Hong Kong Polytechnic University ; University of Chester (2015-03-18)
      Mesenchymal stem cells (MSCs) are known to play important roles in development, post-natal growth, repair, and regeneration of mesenchymal tissues. What is more, surface treatments are widely reported to affect the biomimetic nature of materials. This paper will detail, discuss and compare laser surface treatment of polyamide (Polyamide 6,6), using a 60 W CO2 laser, and NiTi alloy, using a 100 W fiber laser, and the effects of these treatments on mesenchymal stem cell response. The surface morphology and composition of the polyamide and NiTi alloy were studied by scanning electron microscopy (SEM) and X-ray photoemission spectroscopy (XPS), respectively. MSC cell morphology cell counting and viability measurements were done by employing a haemocytometer and MTT colorimetric assay. The success of enhanced adhesion and spreading of the MSCs on each of the laser surface treated samples, when compared to as-received samples, is evidenced in this work.
    • Modifications of surface properties of beta Ti by laser gas diffusion nitriding

      Ng, Chi-Ho; Chan, Chi-Wai; Man, Hau-Chung; Waugh, David G.; Lawrence, Jonathan; University of Chester; Queen's University; The Hong Kong Polytechnic University (AIP Publishing, 2016-03-31)
      b-type Ti-alloy is a promising biomedical implant material as it has a low Young’s modulus and is also known to have inferior surface hardness. Various surface treatments can be applied to enhance the surface hardness. Physical vapor deposition and chemical vapor deposition are two examples of this but these techniques have limitations such as poor interfacial adhesion and high distortion. Laser surface treatment is a relatively new surface modification method to enhance the surface hardness but its application is still not accepted by the industry. The major problem of this process involves surface melting which results in higher surface roughness after the laser surface treatment.This paper will report the results achieved by a 100W CW fiber laser for laser surface treatment without the surface being melted. Laser processing parameters were carefully selected so that the surface could be treated without surface melting and thus the surface finish of the component could be maintained. The surface and microstructural characteristics of the treated samples were examined using x-ray diffractometry, optical microscopy, three-dimensional surface profile and contact angle measurements, and nanoindentation test.
    • Modifications of surface properties of beta Ti by laser gas diffusion nitriding

      Ng, Chi-Ho; Lawrence, Jonathan; Waugh, David G.; Chan, Chi-Wai; Man, Hau-Chung; University of Chester (Laser Institute of America, 2015-10)
      β -type Ti-alloy is a promising biomedical implant material as it has a low Young’s modulus but is also known to have inferior surface hardness. Various surface treatments can be applied to enhance the surface hardness. Physical vapour deposition (PVD) and chemical vapour deposition (CVD) are two examples of this but these techniques have limitations such as poor interfacial adhesion and high distortion. Laser surface treatment is a relatively new surface modification method to enhance the surface hardness but its application is still not accepted by the industry. The major problem of this process involves surface melting which results in higher surface roughness after the laser surface treatment. This paper will report the results achieved by a 100 W CW fiber laser for laser surface treatment without the surface being melted. Laser processing parameters were carefully selected so that the surface could be treated without surface melting and thus the surface finish of the component could be maintained. The surface and microstructural characteristics of the treated samples were examined using X-ray diffractometry (XRD), optical microscopy (OM), 3-D surface profile & contact angle measurements and nano-indentation test.
    • Modulating the wettability characteristics and bioactivity of polymeric materials using laser surface treatment

      Waugh, David G.; Lawrence, Jonathan; Shukla, Pratik; University of Chester (Laser Institute of America, 2015-10)
      It has been thoroughly demonstrated previously that lasers hold the ability to modulate surface properties of materials with the result being utilization of such lasers in both research and industry. What is more, these laser surface treatments have been shown to affect the adhesion characteristics and bio-functionality of those materials. This paper details the use of a Synrad CO2 laser marking system to surface treat nylon 6,6 and polytetrafluoroethylene (PTFE). The laser-modified surfaces were analyzed using 3D surface profilometry to ascertain an increase in surface roughness when compared to the as-received samples. The wettability characteristics were determined using the sessile drop method and showed variations in contact angle for both the nylon 6,6 and PTFE. For the PTFE it was shown that the laser surface treatment gave rise to a more hydrophobic surface with contact angles of up to 150° being achieved. For the nylon 6,6, it was observed that the contact angle was modulated approximately ±10° for different samples which could be attributed to a likely mixed state wetting regime. The effects of the laser surface treatment on osteoblast cell and stem cell growth is discussed showing an overall enhancement of biomimetic properties, especially for the nylon 6,6. This work investigates the potential governing parameters which drives the wettability/adhesion characteristics and bioactivity of the laser surface treated polymeric materials.
    • Modulating the wettability characteristics and bioactivity of polymeric materials using laser surface treatment

      Waugh, David G.; Lawrence, Jonathan; Shukla, Pratik; University of Chester (AIP Publishing, 2016-03-31)
      It has been thoroughly demonstrated previously that lasers hold the ability to modulate surface properties of materials with the result being utilization of such lasers in both research and industry. What is more, these laser surface treatments have been shown to affect the adhesion characteristics and bio-functionality of those materials. This paper details the use of a Synrad CO2 laser marking system to surface treat nylon 6,6 and polytetrafluoroethylene (PTFE). The laser-modified surfaces were analyzed using 3D surface profilometry to ascertain an increase in surface roughness when compared to the as-received samples. The wettability characteristics were determined using the sessile drop method and showed variations in contact angle for both the nylon 6,6 and PTFE. For the PTFE it was shown that the laser surface treatment gave rise to a more hydrophobic surface with contact angles of up to 150° being achieved. For the nylon 6,6, it was observed that the contact angle was modulated approximately ±10° for different samples which could be attributed to a likely mixed state wetting regime. The effects of the laser surface treatment on osteoblast cell and stem cell growth is discussed showing an overall enhancement of biomimetic properties, especially for the nylon 6,6. This work investigates the potential governing parameters which drives the wettability/adhesion characteristics and bioactivity of the laser surface treated polymeric materials.
    • On the study of oil paint adhesion on optically transparent glass: Conservation of reverse paintings on glass

      Bayle, M.; Waugh, David G.; Colston, Belinda J.; Lawrence, Jonathan; University of Chester (Elsevier, 2015-12-01)
      Reverse painting on glass is a technique which consists of applying a cold paint layer on the reverse-side of glass. The main challenge facing these artworks is the fragile adhesion of the pictorial layer – a simple movement can modify the appearance of the painting. This paper details a study into the adhesion parameters of pigments on glass and the comparison between different pigments. The relationships between the binder (linseed oil) with pigments and the glass with or without the use of an adhesive are studied. Physical analyses by surface characterisation have been carried out to better understand the influence of the pigment. The use of a sessile drop device, optical microscopy, scanning electron microscopy (SEM), a surface 3D profiler and a pencil hardness scratch tester were necessary to establish a comparison of the pictorial layer adhesion. A comparison of the effect of two adhesives; namely ox gall and gum arabic, has shown that the adhesion is not only linked to the physical parameters but that possible chemical reactions can influence the results. Finally, a treatment based on humidity-extreme storage has shown the weakness of some pictorial layers.
    • Surface glazing of concrete using lasers for protection and decommissioning

      Lawrence, Jonathan; Waugh, David G.; Shukla, Pratik; University of Chester (2015-01)