• Verification of calculation code THERM in accordance with BS EN ISO 10077-2

      Nammi, Sathish K.; Shirvani, Hassan; Shirvani, Ayoub; Edwards, Gerard; Whitty, Justin P. M.; Anglia Ruskin University, Anglia Ruskin University, Anglia Ruskin University, University of Chester, University of Central Lancashire (Anglia Ruskin Research Online, 2014)
      Calculation codes are useful in predicting the heat transfer features in the fenestration industry. THERM is a finite element analysis based code, which can be used to compute thermal transmittance of windows, doors and shutters. It is important to verify results of THERM as per BS EN ISO 10077-2 to meet the compliance requirements. In this report, two-dimensional thermal conductance parameters were computed. Three versions of THERM, 5.2, 6.3 and 7.1, were used at two successive finite element mesh densities to assess their comparability. The results were all compliant with the aforementioned British Standard.
    • Visual-Inertial 2D Feature Tracking based on an Affine Photometric Model

      Aufderheide, Dominik; Edwards, Gerard; Krybus, Werner; South Westphalia University of Applied Sciences, University of Chester, South Westphalia University of Applied Sciences (Springer, 2015)
      The robust tracking of point features throughout an image sequence is one fundamental stage in many different computer vision algorithms (e.g. visual modelling, object tracking, etc.). In most cases, this tracking is realised by means of a feature detection step and then a subsequent re-identification of the same feature point, based on some variant of a template matching algorithm. Without any auxiliary knowledge about the movement of the camera, actual tracking techniques are only robust for relatively moderate frame-to-frame feature displacements. This paper presents a framework for a visual-inertial feature tracking scheme, where images and measurements of an inertial measurement unit (IMU) are fused in order to allow a wider range of camera movements. The inertial measurements are used to estimate the visual appearance of a feature’s local neighbourhood based on a affine photometric warping model.