• Terahertz Characterisation of UV Offset Lithographically Printed Electronic-Ink

      Zeng, Yang; Edwards, Marc; Stevens, Robert; Bowen, John; Donnan, Robert S.; Yang, Bin; University of London; National University of Defense Technology; University of Chester; Nottingham Trent University; University of Reading (Elsevier, 2017-06-10)
      Inkjet-printed electronics are showing promising potential in practical applications, but methods for real-time, non-contact monitoring of printing quality are lacking. This work explores Terahertz (THz) sensing as an approach for such monitoring. It is demonstrated that alterations in the localised dielectric characteristics of inkjet-printed electronics can be qualitatively distinguished using quasi-optically-based, sub-THz reflection spectroscopy. Decreased reflection coefficients caused by the sintering process are observed and quantified. Using THz near-field scanning imaging, it is shown that sintering produces a more uniform spatial distribution of permittivity in the printed carbon patterns. Images generated using THz-TDS based imaging are presented, demonstrating the combination of high resolution imaging with quantification of complex permittivities. This work, for the first time, demonstrates the feasibility of quality control in printed electronic-ink with THz sensing, and is of practical significance to the development of in-situ and non-contact commercial-quality characterisation methods for inkjet-printed electronics.
    • Titanium Dioxide Engineered for Near-dispersionless High Terahertz Permittivity and Ultra-low-loss

      Chuying, Yu; Zeng, Yang; Yang, Bin; Donnan, Robert S.; Huang, Jinbao; Xiong, Zhaoxian; Mahajan, Amit; Shi, Baogui; Ye, Haitao; Binions, Russell; et al. (Nature Publishing Group, 2017-07-26)
      Realising engineering ceramics to serve as substrate materials in high-performance terahertz(THz) that are low-cost, have low dielectric loss and near-dispersionless broadband, high permittivity, is exceedingly demanding. Such substrates are deployed in, for example, integrated circuits for synthesizing and converting nonplanar and 3D structures into planar forms. The Rutile form of titanium dioxide (TiO2) has been widely accepted as commercially economical candidate substrate that meets demands for both low-loss and high permittivities at sub-THz bands. However, the relationship between its mechanisms of dielectric response to the microstructure have never been systematically investigated in order to engineer ultra-low dielectric-loss and high value, dispersionless permittivities. Here we show TiO2 THz dielectrics with high permittivity (ca. 102.30) and ultra-low loss (ca. 0.0042). These were prepared by insight gleaned from a broad use of materials characterisation methods to successfully engineer porosities, second phase, crystallography shear-planes and oxygen vacancies during sintering. The dielectric loss achieved here is not only with negligible dispersion over 0.2 - 0.8 THz, but also has the lowest value measured for known high-permittivity dielectrics. We expect the insight afforded by this study will underpin the development of subwavelength-scale, planar integrated circuits, compact high Q-resonators and broadband, slow-light devices in the THz band.
    • Verification of calculation code THERM in accordance with BS EN ISO 10077-2

      Nammi, Sathish K.; Shirvani, Hassan; Shirvani, Ayoub; Edwards, Gerard; Whitty, Justin P. M.; Anglia Ruskin University, Anglia Ruskin University, Anglia Ruskin University, University of Chester, University of Central Lancashire (Anglia Ruskin Research Online, 2014)
      Calculation codes are useful in predicting the heat transfer features in the fenestration industry. THERM is a finite element analysis based code, which can be used to compute thermal transmittance of windows, doors and shutters. It is important to verify results of THERM as per BS EN ISO 10077-2 to meet the compliance requirements. In this report, two-dimensional thermal conductance parameters were computed. Three versions of THERM, 5.2, 6.3 and 7.1, were used at two successive finite element mesh densities to assess their comparability. The results were all compliant with the aforementioned British Standard.
    • Visual-Inertial 2D Feature Tracking based on an Affine Photometric Model

      Aufderheide, Dominik; Edwards, Gerard; Krybus, Werner; South Westphalia University of Applied Sciences, University of Chester, South Westphalia University of Applied Sciences (Springer, 2015)
      The robust tracking of point features throughout an image sequence is one fundamental stage in many different computer vision algorithms (e.g. visual modelling, object tracking, etc.). In most cases, this tracking is realised by means of a feature detection step and then a subsequent re-identification of the same feature point, based on some variant of a template matching algorithm. Without any auxiliary knowledge about the movement of the camera, actual tracking techniques are only robust for relatively moderate frame-to-frame feature displacements. This paper presents a framework for a visual-inertial feature tracking scheme, where images and measurements of an inertial measurement unit (IMU) are fused in order to allow a wider range of camera movements. The inertial measurements are used to estimate the visual appearance of a feature’s local neighbourhood based on a affine photometric warping model.