• Perovskite Srx(Bi1-xNa0.97-xLi0.03)0.5TiO3 ceramics with polar nano regions for high power energy storage

      Wu, Jiyue; Mahajan, Amit; Riekehr, Lars; Zhang, Hangfeng; Yang, Bin; Meng, Nan; Zhang, Zhen; Yan, Haixue; Queen Mary University of London; Uppsala University; University of Chester (Elsevier, 2018-06-06)
      Dielectric capacitors are very attractive for high power energy storage. However, the low energy density of these capacitors, which is mainly limited by the dielectric materials, is still the bottleneck for their applications. In this work, lead-free single-phase perovskite Srx(Bi1-xNa0.97-xLi0.03)0.5TiO3 (x=0.30 and 0.38) bulk ceramics, prepared using solid-state reaction method, were carefully studied for the dielectric capacitor application. Polar nano regions (PNRs) were created in this material using co-substitution at A-site to enable relaxor behaviour with low remnant polarization (Pr) and high maximum polarization (Pmax). Moreover, Pmax was further increased due to reversible electric field induced phase transitions. Comprehensive structural and electrical studies were performed to confirm the PNRs and the reversible phase transitions. And finally a high energy density (1.70 J/cm3) with an excellent efficiency (87.2%) was achieved using the contribution of PNRs and field-induced transitions in this material, making it among the best performing lead-free dielectric ceramic bulk material for high energy storage.
    • The power of VNA-driven quasi-optics to sense group molecular action in condensed phase systems

      Donnan, Rob; Tian, Kun V.; Yang, Bin; Chass, Gregory. A.; University of Chester (2014-12-08)
      The versatility for quasi-optical circuits, driven by modern vector network analysers, is demonstrated for the purpose of low energy (meV) coherent spectroscopy. One such example is shown applied to the curing dynamics of a non-mercury-based dental cement. This highlights the special place the methodology holds as a `soft-probe' to reveal the time-resolved energetics of condensed phased systems as they self-organise to adopt their low energy state.
    • Power System with Variable Speed Wind Turbine and Diesel Generation Units

      Hu, Yanting; Chen, Zhe; Glyndwr; Aalborg University (EER, 2014-01-20)
      Thispaper presents a power system consisting of wind turbines, diesel generation units, and energy storage system. Both wind turbines and diesel engine adopt variable speed operation mode;and power electronic interface are used for the generation units which provide flexible and wide range of control on the power. The system configuration, characteristics, operation principles are presented. The controller and control strategies are discussed. The simulation studies have been performed and the results are presented.
    • Programmable logic controllers and Direct digital controls in Buildings

      Khalid, Yousaf; University of Chester (2018-09)
      The concept of programmable logic controller (PLC) originated over the last century that has revolutionised the industrial sector. In the last few decades PLC in the form of DDC has been commonly used in Building Energy Management Systems (BEMS). The contribution of this work is to analyse PLC/DDC role in the ongoing BEMS advancements in the building sector. Currently DDC are not understood by building design and simulation engineers who assess the controllability of the building in practice. This paper would enhance the understanding of integrating DDC in buildings and influence creation of better modelling and simulation tools for assessing their impact on energy performance in practice.
    • Q-V droop control using fuzzy logic and reciprocal characteristic

      Wang, Lu; Hu, Yanting; Chen, Zhe; Glyndwr University; Aalborg University (Engineering and Technology Publishing, 2014-01-01)
      Today, the conventional power system is facing some global environmental problems, which is leading to a new trend of power grid by using “green and clear” energy sources. As the platform of smart grid technology, the microgrid associated with distributed energy resources (DERs) may provide electric power at distributed voltage level, which not only is an autonomous system, but also can be connected to the main grid. To improve the stability and controllability of the power grid, this paper presents an improved Q-V droop control strategy using fuzzy logic controller and reciprocal characteristic. Matlab/Simulink is used for analysing the performance of system. The feasibility of the improved droop control strategy has been verified and discussed. The results demonstrate the improved Q-V droop control strategy could have good effects in grid-connected and islanded mode, and during operation mode transitions.
    • Quality-Control of UV offset Lithographicaly Printed Electronic-Ink by THz Technology

      Zeng, Yang; Donnan, Robert; Edwards, Marc; Yang, Bin; University of Chester (IEEE Conference Publications, 2017-10-16)
      In this paper, a novel quality-monitor method of inkjet-printed electronics based on terahertz (THz) sensing is presented. Specifically, two different approaches, namely THz reflection spectroscopy and THz near-field scanning, are proposed.
    • Research on the synchronization control strategy for microgrid-connected voltage source inverter

      Cao, Yuanzhi; Hu, Yanting; Hu, Rui; Chen, Jianfei (IEEE, 2015-06)
      Microgrid is intended and featured to be able to operate in both grid-connected and islanded mode to ensure high quality and reliable power supply. In order to achieve stable operation of the microgrid-connected voltage source inverter (MVSI) units under paralleled or grid-connected mode, a novel synchronization method based on droop control is proposed in this paper. The difference of phase and amplitude between different MVSI units is detected and is used to calculate the output frequency and amplitude of the MVSI. This method can smooth transfer the MVSI units from standalone mode to paralleled mode. The simulation and experimental results show that the proposed method is effective in achieving paralleled operation of the MVSI units.
    • Smart guaranteed time-slot allocation algorithm for industrial wireless sensor networks emergency message transmission

      Chen, Qinyin; Hu, Yanting; Chen, Zhe; Davies, John N.; Excell, Peter (IET, 2015-04)
      This paper presents investigation on application of wireless sensor networks (WSNs) in wind power generation systems and highlights an important issue associated with the deadline for the delivery of messages among nodes based on the IEEE 802.15.4E standard. Owing to the limits of standard and the power system application requirements, this research proposes a smart guaranteed time slot (S-GTS) allocation algorithm which is based on the urgent/important matrix. This proposed algorithm promotes the utilisation of contention free period in a superframe. Besides, over seven GTSs can be allocated in a superframe, there are only seven GTSs that can be used in the standard. In addition, this study proves the value of BO and SO upper bound is 6 for the WSN application in power systems. Moreover, the network delay of S-GTS performs better than the 16-time-slot mechanism and i-GAME mechanism.
    • Spreadsheet tools to estimate the thermal transmittance and thermal conductivities of gas spaces of an Insulated Glazing Unit

      Nammi, Sathish K.; Shirvani, Hassan; Shirvani, Ayoub; Edwards, Gerard; Dunn, Jeremy; Anglia Ruskin University, Anglia Ruskin University, Anglia Ruskin University, University of Chester, Glazing Vision (Anglia Ruskin Research Online, 2014-03)
      An Insulated Glazing unit (IGU) is constructed with two or more layers of glass panes sealed together by gas spaces in-between. IGUs are prevalent in windows, doors and rooflights, primarily due to their improved thermal resistance. Today, most IGUs are either two or three layered. Adding further layers of glass improves thermal insulation but with the penalty of increased cost and weight. Low emissivity (Low-e) film coatings, when deposited on the glass panes, reduce long-wavelength radiative heat losses. Furthermore, filling the gas spaces with the inert gases (e.g. Argon, Krypton, Xenon and SF6), further reduce conduction and natural convection across the gap. In summary, higher thermal insulation performance of an IGU can be achieved with gas fillings and Low-e coatings on glass. This report discusses spreadsheets that have been developed, capable of estimating the thermal transmittance values of IGU, as per BS EN 673. The spreadsheet tools also have the ability to estimate the thermal conductivity of the gas spaces between the panes of IGU.
    • SrFe12O19 based ceramics with ultra-low dielectric loss in the millimetre-wave band

      Yu, Chuying; Zeng, Yang; Yang, Bin; Wylde, Richard; Donnan, Robert; Wu, Jiyue; Xu, Jie; Gao, Feng; Abrahams, Isaac; Reece, Mike J.; Yan, Haixue; Queen Mary University of London; Hunan University; National University of Defence Technology; University of Chester; Thomas Keating Ltd; Northwestern Polytechnical University (AIP Publishing, 2018-04-02)
      Non-reciprocal devices such as isolators and circulators, based mainly on ferromagnetic materials, require extremely low dielectric loss in order for strict power-link budgets to be met for millimetre (mm)-wave and terahertz (THz) systems. The dielectric loss of commercial SrFe12O19 hexaferrite was significantly reduced to below 0.002 in the 75 - 170 GHz band by thermal annealing. While the overall concentration of Fe2+ and oxygen vacancy defects is relatively low in the solid, their concentration at the surface is significantly higher, allowing for a surface sensitive technique such as XPS to monitor the Fe3+/Fe2+ redox reaction. Oxidation of Fe2+ and a decrease in oxygen vacancies is found at the surface on annealing, which is reflected in the bulk sample by a small change in unit cell volume. The significant decrease in dielectric loss property can be attributed to the decreased concentration of charged defects such as Fe2+ and oxygen vacancies through annealing process, which demonstrated that thermal annealing could be effective in improving the dielectric performance of ferromagnetic materials for various applications.
    • Terahertz Characterisation of UV Offset Lithographically Printed Electronic-Ink

      Zeng, Yang; Edwards, Marc; Stevens, Robert; Bowen, John; Donnan, Robert S.; Yang, Bin; University of London; National University of Defense Technology; University of Chester; Nottingham Trent University; University of Reading (Elsevier, 2017-06-10)
      Inkjet-printed electronics are showing promising potential in practical applications, but methods for real-time, non-contact monitoring of printing quality are lacking. This work explores Terahertz (THz) sensing as an approach for such monitoring. It is demonstrated that alterations in the localised dielectric characteristics of inkjet-printed electronics can be qualitatively distinguished using quasi-optically-based, sub-THz reflection spectroscopy. Decreased reflection coefficients caused by the sintering process are observed and quantified. Using THz near-field scanning imaging, it is shown that sintering produces a more uniform spatial distribution of permittivity in the printed carbon patterns. Images generated using THz-TDS based imaging are presented, demonstrating the combination of high resolution imaging with quantification of complex permittivities. This work, for the first time, demonstrates the feasibility of quality control in printed electronic-ink with THz sensing, and is of practical significance to the development of in-situ and non-contact commercial-quality characterisation methods for inkjet-printed electronics.
    • Titanium Dioxide Engineered for Near-dispersionless High Terahertz Permittivity and Ultra-low-loss

      Chuying, Yu; Zeng, Yang; Yang, Bin; Donnan, Robert; Huang, Jinbao; Xiong, Zhaoxian; Mahajan, Amit; Shi, Baogui; Ye, Haitao; Binions, Russell; Tarakina, Nadezda V.; Reece, Mike J.; Yan, Haixue; University of London; University of Chester; Xiamen University; Aston University (Nature Publishing Group, 2017-07-26)
      Realising engineering ceramics to serve as substrate materials in high-performance terahertz(THz) that are low-cost, have low dielectric loss and near-dispersionless broadband, high permittivity, is exceedingly demanding. Such substrates are deployed in, for example, integrated circuits for synthesizing and converting nonplanar and 3D structures into planar forms. The Rutile form of titanium dioxide (TiO2) has been widely accepted as commercially economical candidate substrate that meets demands for both low-loss and high permittivities at sub-THz bands. However, the relationship between its mechanisms of dielectric response to the microstructure have never been systematically investigated in order to engineer ultra-low dielectric-loss and high value, dispersionless permittivities. Here we show TiO2 THz dielectrics with high permittivity (ca. 102.30) and ultra-low loss (ca. 0.0042). These were prepared by insight gleaned from a broad use of materials characterisation methods to successfully engineer porosities, second phase, crystallography shear-planes and oxygen vacancies during sintering. The dielectric loss achieved here is not only with negligible dispersion over 0.2 - 0.8 THz, but also has the lowest value measured for known high-permittivity dielectrics. We expect the insight afforded by this study will underpin the development of subwavelength-scale, planar integrated circuits, compact high Q-resonators and broadband, slow-light devices in the THz band.
    • Verification of calculation code THERM in accordance with BS EN ISO 10077-2

      Nammi, Sathish K.; Shirvani, Hassan; Shirvani, Ayoub; Edwards, Gerard; Whitty, Justin P. M.; Anglia Ruskin University, Anglia Ruskin University, Anglia Ruskin University, University of Chester, University of Central Lancashire (Anglia Ruskin Research Online, 2014)
      Calculation codes are useful in predicting the heat transfer features in the fenestration industry. THERM is a finite element analysis based code, which can be used to compute thermal transmittance of windows, doors and shutters. It is important to verify results of THERM as per BS EN ISO 10077-2 to meet the compliance requirements. In this report, two-dimensional thermal conductance parameters were computed. Three versions of THERM, 5.2, 6.3 and 7.1, were used at two successive finite element mesh densities to assess their comparability. The results were all compliant with the aforementioned British Standard.
    • Visual-Inertial 2D Feature Tracking based on an Affine Photometric Model

      Aufderheide, Dominik; Edwards, Gerard; Krybus, Werner; South Westphalia University of Applied Sciences, University of Chester, South Westphalia University of Applied Sciences (Springer, 2015)
      The robust tracking of point features throughout an image sequence is one fundamental stage in many different computer vision algorithms (e.g. visual modelling, object tracking, etc.). In most cases, this tracking is realised by means of a feature detection step and then a subsequent re-identification of the same feature point, based on some variant of a template matching algorithm. Without any auxiliary knowledge about the movement of the camera, actual tracking techniques are only robust for relatively moderate frame-to-frame feature displacements. This paper presents a framework for a visual-inertial feature tracking scheme, where images and measurements of an inertial measurement unit (IMU) are fused in order to allow a wider range of camera movements. The inertial measurements are used to estimate the visual appearance of a feature’s local neighbourhood based on a affine photometric warping model.