• Terahertz Signatures of Hydrate Formation in Alkali Halide Solutions

      Ligang, Chen; Ren, Guanhua; Liu, Liyuan; Guo, Pan; Wan, Endong; Zhou, Lu; Zhu, Zhonglie; Zhang, Jianbing; Yang, Bin; Zhang, Wentao; et al.
      We systematically studied the ability of 20 alkali halides to form solid hydrates in the frozen state from their aqueous solutions by terahertz time-domain spectroscopy combined with density functional theory (DFT) calculations. We experimentally observed the rise of new terahertz absorption peaks in the spectral range of 0.3-3.5 THz in frozen alkali halide solutions. The DFT calculations prove that the rise of observed new peaks in solutions containing Li+, Na+ or F‾ ions indicates the formation of salt hydrates, while that in other alkali halide solutions is caused by the splitting phonon modes of the imperfectly crystallized salts in ice. As a simple empirical rule, the correlation between the terahertz signatures and the ability of 20 alkali halides to form a hydrate has been established.