• Microstructure and broadband dielectric properties of Zn2SiO4 ceramics with nano-sized TiO2 addition

      Weng, Zhangzhao; Song, Chunxiao; Xiong, Zhaoxian; Xue, Hao; Sun, Wenfeng; Zhang, Yan; Yang, Bin; Reece, Michael J.; Yan, Haixue; Xiamen University; Capital Normal University; University of Chester; Queen Mary, University of London; China Electronic Product Reliability and Environmental Testing Research Institute (Elsevier, 2019-04-06)
      Zn2SiO4 ceramics with nano-sized TiO2 addition (ZST) were synthesized by conventional solid state method. The association between the new composite’s microstructures and dielectric properties reveals that reduced pores, increased density and average grain sizes with increasing sintering temperatures, have contributed to the increased permittivities at kHz and microwave bands; the decrease of the permittivities at 1275 0C is due to the form of twin planes. At the terahertz band, the competition of generating oxygen vacancies and forming them into twin crystallographic shear planes dominates the change of permittivities: the crystallographic shear planes decrease the permittivity at the sintering temperature 12250C and 12500C, and the high-rate generation of oxygen vacancies at 1275 0C increases the permittivities. The ZST ceramics demonstrate stable permittivity and low dielectric losses (<10-3 from 10 kHz to microwave band; and < 10-2 at THz range); and the temperature coefficient of resonant frequency is optimized to close zero. These advanced dielectric properties and low sintering temperature (<13000C) provide the ZST ceramics great potential in designing microwave and THz devices.
    • Quality Mapping of Offset Lithographic Printed Antenna Substrates and Electrodes by Millimeter-Wave Imaging

      Zhang, Jiao; Tang, Jianhua; Sun, Wenfeng; Zhang, Yan; Yang, Bin; Wang, Xinke; University of Chester (MDPI, 2019-06-14)
      Offset lithographic printed flexible antenna substrate boards and electrodes have attracted much attention recently due to the boost of flexible electronics. Unmanned quality inspection of these printed substrate boards and electrodes demands high-speed, large-scale and nondestructive methods, which is highly desired for manufacturing industries. The work here demonstrates two kinds of millimeter (mm)-wave imaging technologies for the quality (surface uniformity and functionality parameters) inspection of printed silver substrates and electrodes on paper and thin polyethylene film, respectively. One technology is a mm-wave line scanner system and the other is a terahertz-time domain spectroscopy-based charge-coupled device (CCD) imaging system. The former shows the ability of detecting transmitted mm-wave amplitude signals only; its detection is fast in a second time scale and the system shows great potential for the inspection of large-area printed surface uniformity. The latter technology achieves high spatial resolution images of up to hundreds of micrometers at the cost of increased inspection time, in a time scale of tens of seconds. With the exception of absorption rate information, the latter technology offers additional phase information, which can be used to work out 2D permittivity distribution. Moreover, its uniformity is vital for the antenna performance. Additionally, the results demonstrate that compression rolling treatment significantly improves the uniformity of printed silver surfaces and enhances the substrate’s permittivity values.