• Spreadsheet tools to estimate the thermal transmittance and thermal conductivities of gas spaces of an Insulated Glazing Unit

      Nammi, Sathish K.; Shirvani, Hassan; Shirvani, Ayoub; Edwards, Gerard; Dunn, Jeremy; Anglia Ruskin University, Anglia Ruskin University, Anglia Ruskin University, University of Chester, Glazing Vision (Anglia Ruskin Research Online, 2014-03)
      An Insulated Glazing unit (IGU) is constructed with two or more layers of glass panes sealed together by gas spaces in-between. IGUs are prevalent in windows, doors and rooflights, primarily due to their improved thermal resistance. Today, most IGUs are either two or three layered. Adding further layers of glass improves thermal insulation but with the penalty of increased cost and weight. Low emissivity (Low-e) film coatings, when deposited on the glass panes, reduce long-wavelength radiative heat losses. Furthermore, filling the gas spaces with the inert gases (e.g. Argon, Krypton, Xenon and SF6), further reduce conduction and natural convection across the gap. In summary, higher thermal insulation performance of an IGU can be achieved with gas fillings and Low-e coatings on glass. This report discusses spreadsheets that have been developed, capable of estimating the thermal transmittance values of IGU, as per BS EN 673. The spreadsheet tools also have the ability to estimate the thermal conductivity of the gas spaces between the panes of IGU.
    • Verification of calculation code THERM in accordance with BS EN ISO 10077-2

      Nammi, Sathish K.; Shirvani, Hassan; Shirvani, Ayoub; Edwards, Gerard; Whitty, Justin P. M.; Anglia Ruskin University, Anglia Ruskin University, Anglia Ruskin University, University of Chester, University of Central Lancashire (Anglia Ruskin Research Online, 2014)
      Calculation codes are useful in predicting the heat transfer features in the fenestration industry. THERM is a finite element analysis based code, which can be used to compute thermal transmittance of windows, doors and shutters. It is important to verify results of THERM as per BS EN ISO 10077-2 to meet the compliance requirements. In this report, two-dimensional thermal conductance parameters were computed. Three versions of THERM, 5.2, 6.3 and 7.1, were used at two successive finite element mesh densities to assess their comparability. The results were all compliant with the aforementioned British Standard.