• Microstructure and broadband dielectric properties of Zn2SiO4 ceramics with nano-sized TiO2 addition

      Weng, Zhangzhao; Song, Chunxiao; Xiong, Zhaoxian; Xue, Hao; Sun, Wenfeng; Zhang, Yan; Yang, Bin; Reece, Michael J.; Yan, Haixue; Xiamen University; Capital Normal University; University of Chester; Queen Mary, University of London; China Electronic Product Reliability and Environmental Testing Research Institute (Elsevier, 2019-04-06)
      Zn2SiO4 ceramics with nano-sized TiO2 addition (ZST) were synthesized by conventional solid state method. The association between the new composite’s microstructures and dielectric properties reveals that reduced pores, increased density and average grain sizes with increasing sintering temperatures, have contributed to the increased permittivities at kHz and microwave bands; the decrease of the permittivities at 1275 0C is due to the form of twin planes. At the terahertz band, the competition of generating oxygen vacancies and forming them into twin crystallographic shear planes dominates the change of permittivities: the crystallographic shear planes decrease the permittivity at the sintering temperature 12250C and 12500C, and the high-rate generation of oxygen vacancies at 1275 0C increases the permittivities. The ZST ceramics demonstrate stable permittivity and low dielectric losses (<10-3 from 10 kHz to microwave band; and < 10-2 at THz range); and the temperature coefficient of resonant frequency is optimized to close zero. These advanced dielectric properties and low sintering temperature (<13000C) provide the ZST ceramics great potential in designing microwave and THz devices.
    • Microwave and terahertz dielectric properties of MgTiO3–CaTiO3 ceramics

      Huang, Jinbao; Yang, Bin; Yu, Chuying; Zhang, Guang; Xue, Hao; Xiong, Zhaoxian; Viola, Giuseppe; Donnan, Robert S.; Yan, Haixue; Reece, Michael J.; et al. (Elsevier, 2015-10-05)
      The THz dielectric properties of MgTiO3–CaTiO3 ceramics are reported. The ceramics were prepared via a solid-state reaction route and the sintering conditions were optimized to obtain ceramics with high permittivity and low loss in the terahertz frequency domain. The amount of impurities (MgTi2O5) and grain size increased with increasing sintering temperature. The dielectric properties improved with increasing density, and the best terahertz dielectric performance was obtained at 1260 °C, with a permittivity of 17.73 and loss of 3.07×10−3. Ceramics sintered above 1260 °C showed a sharp increase in loss, which is ascribed to an increase in the impurity content.
    • SrFe12O19 based ceramics with ultra-low dielectric loss in the millimetre-wave band

      Yu, Chuying; Zeng, Yang; Yang, Bin; Wylde, Richard; Donnan, Robert S.; Wu, Jiyue; Xu, Jie; Gao, Feng; Abrahams, Isaac; Reece, Michael J.; et al. (AIP Publishing, 2018-04-02)
      Non-reciprocal devices such as isolators and circulators, based mainly on ferromagnetic materials, require extremely low dielectric loss in order for strict power-link budgets to be met for millimetre (mm)-wave and terahertz (THz) systems. The dielectric loss of commercial SrFe12O19 hexaferrite was significantly reduced to below 0.002 in the 75 - 170 GHz band by thermal annealing. While the overall concentration of Fe2+ and oxygen vacancy defects is relatively low in the solid, their concentration at the surface is significantly higher, allowing for a surface sensitive technique such as XPS to monitor the Fe3+/Fe2+ redox reaction. Oxidation of Fe2+ and a decrease in oxygen vacancies is found at the surface on annealing, which is reflected in the bulk sample by a small change in unit cell volume. The significant decrease in dielectric loss property can be attributed to the decreased concentration of charged defects such as Fe2+ and oxygen vacancies through annealing process, which demonstrated that thermal annealing could be effective in improving the dielectric performance of ferromagnetic materials for various applications.
    • Titanium Dioxide Engineered for Near-dispersionless High Terahertz Permittivity and Ultra-low-loss

      Chuying, Yu; Zeng, Yang; Yang, Bin; Donnan, Robert S.; Huang, Jinbao; Xiong, Zhaoxian; Mahajan, Amit; Shi, Baogui; Ye, Haitao; Binions, Russell; et al. (Nature Publishing Group, 2017-07-26)
      Realising engineering ceramics to serve as substrate materials in high-performance terahertz(THz) that are low-cost, have low dielectric loss and near-dispersionless broadband, high permittivity, is exceedingly demanding. Such substrates are deployed in, for example, integrated circuits for synthesizing and converting nonplanar and 3D structures into planar forms. The Rutile form of titanium dioxide (TiO2) has been widely accepted as commercially economical candidate substrate that meets demands for both low-loss and high permittivities at sub-THz bands. However, the relationship between its mechanisms of dielectric response to the microstructure have never been systematically investigated in order to engineer ultra-low dielectric-loss and high value, dispersionless permittivities. Here we show TiO2 THz dielectrics with high permittivity (ca. 102.30) and ultra-low loss (ca. 0.0042). These were prepared by insight gleaned from a broad use of materials characterisation methods to successfully engineer porosities, second phase, crystallography shear-planes and oxygen vacancies during sintering. The dielectric loss achieved here is not only with negligible dispersion over 0.2 - 0.8 THz, but also has the lowest value measured for known high-permittivity dielectrics. We expect the insight afforded by this study will underpin the development of subwavelength-scale, planar integrated circuits, compact high Q-resonators and broadband, slow-light devices in the THz band.
    • Ultrafast Electric Field-induced Phase Transition in Bulk Bi0.5Na0.5TiO3 under High Intensity Terahertz Irradiation

      Yang, Bin; Zhang, Man; McKinnon, Ruth A.; Viola, Giuseppe; Zhang, Dou; Reece, Michael J.; Abrahams, Isaac; Yan, Haixue; University of Chester; Queen Mary University of London; Central South University
      Ultrafast polarization switching is being considered for the next generation of ferroelectric based devices. Recently, the dynamics of the field-induced transitions associated with this switching have been difficult to explore, due to technological limitations. The advent of terahertz (THz) technology has now allowed for the study of these dynamic processes on the picosecond (ps) scale. In this paper, intense terahertz (THz) pulses were used as a high-frequency electric field to investigate ultrafast switching in the relaxor ferroelectric, Bi0.5Na0.5TiO3. Transient atomic-scale responses, which were evident as changes in reflectivity, were captured by THz probing. The high energy THz pulses induce an increase in reflectivity, associated with an ultrafast field-induced phase transition from a weakly polar phase (Cc) to a strongly polar phase (R3c) within 20 ps at 200 K. This phase transition was confirmed using X-ray powder diffraction and by electrical measurements which showed a decrease in the frequency dispersion of relative permittivity at low frequencies.