• Perovskite Srx(Bi1-xNa0.97-xLi0.03)0.5TiO3 ceramics with polar nano regions for high power energy storage

      Wu, Jiyue; Mahajan, Amit; Riekehr, Lars; Zhang, Hangfeng; Yang, Bin; Meng, Nan; Zhang, Zhen; Yan, Haixue; Queen Mary University of London; Uppsala University; University of Chester (Elsevier, 2018-06-06)
      Dielectric capacitors are very attractive for high power energy storage. However, the low energy density of these capacitors, which is mainly limited by the dielectric materials, is still the bottleneck for their applications. In this work, lead-free single-phase perovskite Srx(Bi1-xNa0.97-xLi0.03)0.5TiO3 (x=0.30 and 0.38) bulk ceramics, prepared using solid-state reaction method, were carefully studied for the dielectric capacitor application. Polar nano regions (PNRs) were created in this material using co-substitution at A-site to enable relaxor behaviour with low remnant polarization (Pr) and high maximum polarization (Pmax). Moreover, Pmax was further increased due to reversible electric field induced phase transitions. Comprehensive structural and electrical studies were performed to confirm the PNRs and the reversible phase transitions. And finally a high energy density (1.70 J/cm3) with an excellent efficiency (87.2%) was achieved using the contribution of PNRs and field-induced transitions in this material, making it among the best performing lead-free dielectric ceramic bulk material for high energy storage.
    • Titanium Dioxide Engineered for Near-dispersionless High Terahertz Permittivity and Ultra-low-loss

      Chuying, Yu; Zeng, Yang; Yang, Bin; Donnan, Robert S.; Huang, Jinbao; Xiong, Zhaoxian; Mahajan, Amit; Shi, Baogui; Ye, Haitao; Binions, Russell; et al. (Nature Publishing Group, 2017-07-26)
      Realising engineering ceramics to serve as substrate materials in high-performance terahertz(THz) that are low-cost, have low dielectric loss and near-dispersionless broadband, high permittivity, is exceedingly demanding. Such substrates are deployed in, for example, integrated circuits for synthesizing and converting nonplanar and 3D structures into planar forms. The Rutile form of titanium dioxide (TiO2) has been widely accepted as commercially economical candidate substrate that meets demands for both low-loss and high permittivities at sub-THz bands. However, the relationship between its mechanisms of dielectric response to the microstructure have never been systematically investigated in order to engineer ultra-low dielectric-loss and high value, dispersionless permittivities. Here we show TiO2 THz dielectrics with high permittivity (ca. 102.30) and ultra-low loss (ca. 0.0042). These were prepared by insight gleaned from a broad use of materials characterisation methods to successfully engineer porosities, second phase, crystallography shear-planes and oxygen vacancies during sintering. The dielectric loss achieved here is not only with negligible dispersion over 0.2 - 0.8 THz, but also has the lowest value measured for known high-permittivity dielectrics. We expect the insight afforded by this study will underpin the development of subwavelength-scale, planar integrated circuits, compact high Q-resonators and broadband, slow-light devices in the THz band.