• Characterization of microwave and terahertz dielectric properties of single crystal La2Ti2O7 along one single direction

      Zhang, Man; Tang, Zhiyong; Zhang, Hangfeng; Smith, Graham; Jiang, Qinghui; Saunders, Theo; Yang, Bin; Yan, Haixue; Huazhong University of Science and Technology; University of Chester; Queen Mary University of London; Chinese Academy of Sciences (Elsevier, 2021-08-02)
      New generation wireless communication systems require characterisations of dielectric permittivity and loss tangent at microwave and terahertz bands. La2Ti2O7 is a candidate material for microwave application. However, all the reported microwave dielectric data are average value from different directions of a single crystal, which could not reflect its anisotropic nature due to the layered crystal structure. Its dielectric properties at the microwave and terahertz bands in a single crystallographic direction have rarely been reported. In this work, a single crystal ferroelectric La2Ti2O7 was prepared by floating zone method and its dielectric properties were characterized from 1 kHz to 1 THz along one single direction. The decrease in dielectric permittivity with increasing frequency is related to dielectric relaxation from radio frequency to microwave then to terahertz band. The capability of characterizing anisotropic dielectric properties of a single crystal in this work opens the feasibility for its microwave and terahertz applications.
    • Terahertz reading of ferroelectric domain wall dielectric switching

      Zhang, Man; Chen, Zhe; Yue, Yajun; Chen, Tao; Yan, Zhongna; Jiang, Qinghui; Yang, Bin; Eriksson, Mirva; Tang, Jianhua; Zhang, Dou; et al.
      Ferroelectric domain walls (DWs) are important nano scale interfaces between two domains. It is widely accepted that ferroelectric domain walls work idly at terahertz (THz) frequencies, consequently discouraging efforts to engineer the domain walls to create new applications that utilise THz radiation. However, the present work clearly demonstrates the activity of domain walls at THz frequencies in a lead free Aurivillius phase ferroelectric ceramic, Ca0.99Rb0.005Ce0.005Bi2Nb2O9, examined using THz time domain spectroscopy (THz-TDS). The dynamics of domain walls are different at kHz and THz frequencies. At low frequencies, domain walls work as a group to increase dielectric permittivity. At THz frequencies, the defective nature of domain walls serves to lower the overall dielectric permittivity. This is evidenced by higher dielectric permittivity in the THz band after poling, reflecting decreased domain wall density. An elastic vibrational model has also been used to verify that a single frustrated dipole in a domain wall represents a weaker contribution to the permittivity than its counterpart within a domain. The work represents a fundamental breakthrough in understanding dielectric contributions of domain walls at THz frequencies. It also demonstrates that THz probing can be used to read domain wall dielectric switching.