Now showing items 1-20 of 782

    • An Ultra-Energy-Efficient Reversible Quantum-Dot Cellular Automata 8:1 Multiplexer Circuit

      Alharbi, Mohammed; Edwards, Gerard; Stocker, Richard; Liverpool John Moores University; University of Chester (MDPI, 2024-01-16)
      Energy efficiency considerations in terms of reduced power dissipation are a significant issue in the design of digital circuits for very large-scale integration (VLSI) systems. Quantum-dot cellular automata (QCA) is an emerging ultralow power dissipation approach, distinct from traditional, complementary metal-oxide semiconductor (CMOS) technology, for building digital computing circuits. Developing fully reversible QCA circuits has the potential to significantly reduce energy dissipation. Multiplexers are fundamental elements in the construction of useful digital circuits. In this paper, a novel, multilayer, fully reversible QCA 8:1 multiplexer circuit with ultralow energy dissipation is introduced. The power dissipation of the proposed multiplexer is simulated using the QCADesigner-E version 2.2 tool, describing the microscopic physical mechanisms underlying the QCA operation. The results show that the proposed reversible QCA 8:1 multiplexer consumes 89% less energy than the most energy-efficient 8:1 multiplexer circuit previously presented in the literature
    • Codes over a ring of order 32 with two Gray maps

      Dougherty, Steven T.; Gildea, Joe; Korban, Adrian; Korban, Adrian; Roberts, Adam (Elsevier, 2024-02-09)
      We describe a ring of order 32 and prove that it is a local Frobenius ring. We study codes over this ring and we give two distinct non-equivalent linear orthogonality-preserving Gray maps to the binary space. Self-dual codes are studied over this ring as well as the binary self-dual codes that are the Gray images of those codes. Specifically, we show that the image of a self-dual code over this ring is a binary self-dual code with an automorphism consisting of 2n transpositions for the first map and n transpositions for the second map. We relate the shadows of binary codes to additive codes over the ring. As Gray images of codes over the ring, binary self-dual [ 70 , 35 , 12 ] codes with 91 distinct weight enumerators are constructed for the first time in the literature.
    • Software Exploitation and Software Protection Measures Enhancing Software Protection via Inter-Process Control Flow Integrity

      Speakman, Lee; Eze, Thaddeus; John, Nigel; Oyinloye, Toyosi A. (University of Chester, 2023-08)
      Computer technologies hinge on the effective functionality of the software component. Unfortunately, software code may have flaws that cause them to be vulnerable and exploitable by attackers. Software exploitation could involve a hijack of the application and deviation of the flow of its execution. Whenever this occurs, the integrity of the software and the underlying system could be compromised. For this reason, there is a need to continually develop resilient software protection tools and techniques. This report details an in-depth study of software exploitation and software protection measures. Efforts in the research were geared towards finding new protection tools for vulnerable software. The main focus of the study is on the problem of Control Flow Hijacks (CFH) against vulnerable software, particularly for software that was built and executed on the RISC-V architecture. Threat models that were addressed are buffer overflow, stack overflow, return-to-libc, and Return Oriented Programming (ROP). Whilst the primary focus for developing the new protection was on RISC-V-based binaries, programs that were built on the more widespread x86 architecture were also explored comparatively in the course of this study. The concept of Control Flow Integrity (CFI) was explored in the study and a proof-of-concept for mitigating ROP attacks that result in Denial of Service is presented. The concept of CFI involves the enforcement of the intended flow of execution of a vulnerable program. The novel protection is based on the CFI concept combined with Inter-process signalling (named Inter-Process Control Flow Integrity (IP-CFI)). This technique is orthogonal to well-practised software maintenance such as patching/updates and is complementary to it providing integrity regardless of exploitation path/vector. In evaluating the tool, it was applied to vulnerable programs and found to promptly identify deviations in vulnerable programs when ROP attacks lead to DoS with an average runtime overhead of 0.95%. The system on which the software is embedded is also protected as a result of the watchdog in the IP-CFI where this kind of attack would have progressed unnoticed. Unlike previous CFI models, IP-CFI extends protection outside the vulnerable program by setting up a mutual collaboration between the protected program and a newly written monitoring program. Products derived in this study are software tools in the form of various Linux scripts that can be used to automate several functionalities, two RISC-V ROP gadget finders (RETGadgets & JALRGadget), and the software protection tool IP-CFI. In this report, software is also referred to as binary, executable, application, program or process.
    • FireNet-Micro: Compact Fire Detection Model with High Recall

      Ansari, Mohammad Samar; University of Chester; University of Leeds
      Fire occurrences and threats in everyday life incur substantial costs on ecological, economic, and even social levels. It is crucial to equip establishments with fire prevention systems due to the notable increase in fire incidents. Numerous studies have been conducted to develop efficient and optimal fire detection models in order to prevent such mishaps. Initially, thermal/chemical methods were used, but later, image processing techniques were also employed to identify fire occurrences. Recent approaches have capitalized on the advancements in deep learning models for computer vision. However, most deep learning models face a trade-off between detection speed and performance (accuracy/recall/precision) to maintain a reasonable inference time (for real-time applications) and parameter count. In this paper, we present a bespoke and highly lightweight convolutional neural network specifically designed for fire detection. This model can be integrated into real-time fire monitoring equipment and potentially applied in future methods suhc as CCTV surveillance cameras, traffic lights, and unmanned aerial vehicles (drones) for fire monitoring in futuristic smart city scenarios. Despite having significantly fewer trainable parameters, our customized model, FireNet-Micro, outperforms existing low-parameter-count models in fire detection. When evaluated on the FireNet dataset, FireNet-Micro, with only 171,234 parameters, achieved an impressive overall accuracy of 96.78%. In comparison, FireNet-v2 attained 94.95% accuracy with 318,460 parameters (which is almost double the parameter count of the proposed FireNet-Micro).
    • Deep Learning Based Lightweight Model for Brain Tumor Classification and Segmentation

      Andleeb, Ifrah; Hussain, B. Zahid; Ansari, Salik; Ansari, Mohammad Samar; Kanwal, Nadia; Aslam, Asra; Aligarh Muslim University; University of Chester; Keele University; University of Leeds (Springer, 2024-02-01)
      This paper presents two lightweight deep learning models for efficient detection and segmentation of brain tumors from MRI scans. A custom-made Convolutional Neural Network (CNN) is designed for identification of four different classes of brain tumors viz. Meningioma, Glioma, Pituitary brain tumor and normal (no tumor). Furthermore, another tailor-made lightweight model is presented for the segmentation of the tumor from the Magnetic Resonance Imaging (MRI) scans. The output of the segmentation model is the ‘mask’ depicting the tumor region. The overall performance in terms of detection accuracy, and segmentation accuracy, for the two models is found to be approximately 95% for both the cases individually. The proposed models are worthy additions to the existing literature on brain tumor classification and segmentation models due to their low-parameter count which make the models amenable for deployment on resource-constrained edge hardware.
    • Coumarin‐Based Light‐Responsive Composite Nanochannel Membranes for Precise Controlled Release of Pesticides

      Gong, Jue‐Ying; Zhou, Xing‐Long; Faraj, Yousef; Zou, Lin‐Bing; Zhou, Chang‐Hai; Xie, Rui; Wang, Wei; Liu, Zhuang; Pan, Da‐Wei; Ju, Xiao‐Jie; et al. (Wiley, 2024-01-28)
      The precise, controllable, and safe application of pesticides can effectively reduce pesticide consumption and minimize chemical pollution at the source. Here, a light‐responsive controlled‐release system with flexible control, precise release, easy recovery, and suitability for future pesticide application in aquatic environments is proposed. The system precisely controls the release of pesticides through a light‐responsive composite nanochannel membrane (CTC@SNM/PET) with reactive coumarin derivatives (CTC) as gating molecules. The prepared nanochannel membrane has an ultrathin thickness of 67.5 nm and well‐ordered vertical nanochannels with a uniform size of 1.9 nm, providing a prerequisite for precise molecular gating and high permeability for mass transport. CTC monomers can realize cycloaddition/cyclocracking and nanochannel closing/opening to control the release of pesticides by controlling 365/254 nm ultraviolet light irradiation. As a proof of concept, the light‐responsive controlled‐release system based on CTC@MSF/PET against Saprolegnia parasitica achieves an inhibition rate of more than 95% and reduces pesticide residues by 56.5% compared to the control group. The proposed membrane system has great application potential to easily enable remote, quantitative, timed, and positioned pesticide application, thereby reducing pesticide residues and providing a prospective approach to reducing environmental and human risks.
    • Numerical Approximation for a Stochastic Fractional Differential Equation Driven by Integrated Multiplicative Noise

      Hoult, James; Yan, Yubin; University of Chester (MDPI, 2024-01-23)
      We consider a numerical approximation for stochastic fractional differential equations driven by integrated multiplicative noise. The fractional derivative is in the Caputo sense with the fractional order α∈(0,1), and the non-linear terms satisfy the global Lipschitz conditions. We first approximate the noise with the piecewise constant function to obtain the regularized stochastic fractional differential equation. By applying Minkowski’s inequality for double integrals, we establish that the error between the exact solution and the solution of the regularized problem has an order of O(Δtα) in the mean square norm, where Δt denotes the step size. To validate our theoretical conclusions, numerical examples are presented, demonstrating the consistency of the numerical results with the established theory.
    • Dissolving microneedle system containing Ag nanoparticle-decorated silk fibroin microspheres and antibiotics for synergistic therapy of bacterial biofilm infection

      Li, Yao; Gong, Jue-Ying; Wang, Po; Fu, Han; Faraj, Yousef; Xie, Rui; Wang, Wei; Liu, Zhuang; Pan, Da-Wei; Ju, Xiao-Jie; et al. (Elsevier, 2024-01-26)
      Most cases of delayed wound healing are associated with bacterial biofilm infections due to high antibiotic resistance. To improve patient compliance and recovery rates, it is critical to develop minimally invasive and efficient methods to eliminate bacterial biofilms as an alternative to clinical debridement techniques. Herein, we develop a dissolving microneedle system containing Ag nanoparticles (AgNPs)-decorated silk fibroin microspheres (SFM-AgNPs) and antibiotics for synergistic treatment of bacterial biofilm infection. Silk fibroin microspheres (SFM) are controllably prepared in an incompatible system formed by a mixture of protein and carbohydrate solutions by using a mild all-aqueous phase method and serve as biological templates for the synthesis of AgNPs. The SFM-AgNPs exert dose- and time-dependent broad-spectrum antibacterial effects by inducing bacterial adhesion. The combination of SFM-AgNPs with antibiotics breaks the limitation of the antibacterial spectrum and achieves better efficacy with reduced antibiotic dosage. Using hyaluronic acid (HA) as the soluble matrix, the microneedle system containing SFM-AgNPs and anti-Gram-positive coccus drug (Mupirocin) inserts into the bacterial biofilms with sufficient strength, thereby effectively delivering the antibacterial agents and realizing good antibiofilm effect on Staphylococcus aureus-infected wounds. This work demonstrates the great potential for the development of novel therapeutic systems for eradicating bacterial biofilm infections.
    • Designing defect enriched Bi2Ti2O7/C3N4 micro-photo-electrolysis reactor for photo-Fenton like catalytic reaction

      Yan, Yuan; Hu, Wenyuan; Xie, Xinyu; Faraj, Yousef; Yang, Wulin; Xie, Ruzhen; Sichuan University; Southwest University of Science and Technology; Russian Federation Kaluga No. 13 School; University of Chester; Peking University; Tianfu Yongxing Laboratory, Chengdu (Elsevier, 2023-10-28)
      Among various advanced oxidation processes, photo-Fenton like catalysis, which couples solar energy with Fenton-like catalysis to generate highly reactive species for wastewater decontamination, has attracted broad interests. However, photo-Fenton catalysts usually suffer from poor pH adaptability, metal leaching and photogenerated charge recombination. Herein, a novel defect-enriched Bi2Ti2O7/C3N4 (BTO/CN) heterojunction is prepared via ball milling-thermal treatment method and used as a durable photo-Fenton like catalyst to degrade phenol in water. The BTO/CN heterojunction shows an excellent optical absorption capacity, and a superior e--h+ separation efficiency. With the addition of PMS, a micro-photo-electrolysis reactor can be formed in the BTO/CN, rendering it high photocatalytic activity, excellent tolerance to environmental condition and exceptional stability. The BTO/CN micro-photo-electrolysis reactor exhibits superior performance in phenol removal and excellent tolerance towards salt ions. Non-radical pathway and radical dotOH oxidation are demonstrated to contribute to phenol degradation in the BTO/CN heterojunction photo-Fenton-like system. The PMS can simultaneously boost the interfacial charge transmission from BTO to CN forming internal BTO photoanode and CN photocathode, leading to sustainable photocatalytic performance without secondary pollution. This work successfully demonstrates a feasible strategy to develop solar energy assisted Fenton-like catalyst for efficient water decontamination, which holds a great promise towards practical photo-Fenton water decontamination.
    • Dual-WGAN Ensemble Model for Alzheimer’s Dataset Augmentation with Minority Class Boosting

      Ansari, Mohammad Samar; Ilyas, Kulsum; Aslam, Asra; University of Chester; Aligarh Muslim University; University of Leeds (IEEE, 2023-11-20)
      Deep learning models have become very efficient and robust for several computer vision applications. However, to harness the benefits of state-of-art deep networks in the realm of disease detection and prediction, it is crucial that high-quality datasets be made available for the models to train on. This work recognizes the lack of training data (both in terms of quality and quantity of images) for using such networks for the detection of Alzheimer’s Disease. To address this issue, a Wasserstein Generative Adversarial Network (WGAN) is proposed to generate synthetic images for augmentation of an existing Alzheimer brain image dataset. The proposed approach is successful in generating high-quality images for inclusion in the Alzheimer image dataset, potentially making the dataset more suitable for training high-end models. This paper presents a two-fold contribution: (i) a WGAN is first developed for augmenting the non-dominant class (i.e. Moderate Demented) of the Alzheimer image dataset to bring the sample count (for that class) at par with the other classes, and (ii) another lightweight WGAN is used to augment the entire dataset for increasing the sample counts for all classes.
    • Ferroelectric anomaly of perovskite layer structured Pb2+-doped Sr2Nb2O7 ceramics

      Liu, Lintao; Chen, Tao; Ouyang, Delai; Yue, Yajun; Yang, Bin; Yan, Haixue; Abrahams, Isaac; Fu, Zhengqian; Liang, Ruihong; Zhou, Zhiyong; et al. (Wiley, 2024-01-09)
      The spontaneous polarization of perovskite layer structured Sr2Nb2O7 ferroelectrics (FEs) is originated from mainly the oxygen octahedral rotations and partially the displacement of Sr2+ ions. However, there is FE anomaly of showing the typical characteristics of antiferroelectric (AFE)‐like behavior with double polarization–electric field hysteresis loops of Sr2Nb2O7 ceramics by Pb doping. Here, combinations of low frequency and sub‐terahertz band dielectric measurements under applied DC field reveal field‐induced transition from AFE to FE structure. Temperature dependence of dielectric constant suggested a second‐order phase transition near 215°C, which further supported by the lattice parameters and thermal expansion coefficient extracted from the variable temperature X‐ray diffraction in the heating and cooling processes. The selected area electron diffraction results show no new superlattice spots are observed along [1 0 0] zone axis related to c direction. We proposed a model based on octahedral tilting/rotation that accounted for the incommensurate lattice modulation in the c direction for Sr2Nb2O7 system by Pb doping. All the results show AFE‐like behavior be likely to origin from the electron structures of Pb2+ with a 6s2 lone pair. Our results gave us a new concept provide possibilities for the design of AFE‐like materials in layer structured compounds with super high FE Curie point.
    • An Ultra-Energy-Efficient Reversible Quantum-Dot Cellular Automata 8:1 Multiplexer Circuit

      Alharbi, Mohammed; Edwards, Gerard; Stocker, Richard; Liverpool John Moores University; University of Chester (MDPI, 2024-01-16)
      Energy efficiency considerations in terms of reduced power dissipation are a significant issue in the design of digital circuits for very large-scale integration (VLSI) systems. Quantum-dot cellular automata (QCA) is an emerging ultralow power dissipation approach, distinct from traditional, complementary metal-oxide semiconductor (CMOS) technology, for building digital computing circuits. Developing fully reversible QCA circuits has the potential to significantly reduce energy dissipation. Multiplexers are fundamental elements in the construction of useful digital circuits. In this paper, a novel, multilayer, fully reversible QCA 8:1 multiplexer circuit with ultralow energy dissipation is introduced. The power dissipation of the proposed multiplexer is simulated using the QCADesigner-E version 2.2 tool, describing the microscopic physical mechanisms underlying the QCA operation. The results show that the proposed reversible QCA 8:1 multiplexer consumes 89% less energy than the most energy-efficient 8:1 multiplexer circuit previously presented in the literature.
    • Mechanism of anodic activation of chloride to generate singlet oxygen for fast organic removal using an innovative anode

      Zhang, Weijuan; Lin, Hui; Faraj, Yousef; Xie, Ruzhen; Sichuan University; Dongguan University of Technology; University of Chester (Elsevier, 2024-01-19)
      Electrochemical persulfate activation (E-PS) has recently emerged as a highly effective advanced oxidation process in water decontamination. However, the presence of chloride ions (Cl−) in waters can accelerate anodic corrosion as well as lead to the formation of toxic chlorinated byproducts (i.e., ClO4 −), limiting its practical application. In this study, we introduce a novel Nd/Bi@SnO2 anode to construct E-PS, which exhibits high stability in chloride-containing water with a long-expected service lifetime of 13.7 years. The Nd/Bi@SnO2 electrode can effectively convert Cl− to reactive chlorine with the assistance of PMS, triggering singlet oxygen (1O2) generation for superior organic removal while avoiding toxic chlorinated byproducts (i.e., ClO4 −) generation as well as greatly reducing the energy consumption. Comprehensive structural and electrochemical characterization results demonstrate Nd/Bi co-doping introduces oxygen vacancy on Nd/Bi@SnO2, enabling the anode with high oxygen evolution potential, excellent conductivity and superior stability. Scavenging experiments and electron paramagnetic resonance illustrate the generation of various reactive species in the system, among which 1O2 predominantly contributes to organic removal and results in harmless intermediates. This innovative approach transforms Cl− into ROSs for eco-friendly, energy-efficient water decontamination.
    • Pressurised Anaerobic Digestion for Reducing the Costs of Biogas Upgrading

      Liang, Zhixuan; Wilkinson, D. W.; Wang, C.; Wilkinson, S. J. (Springer, 2023-05-11)
      The overall purpose of this study is to investigate the potential for producing higher energy biogas at elevated fermentation pressures. Upgrading of biogas is often carried out to increase its methane (energy) content by removing carbon dioxide. Upgrading is used, for example, to give methane of sufficient purity that it can be injected directly into the gas supply grid. In this research, freshwater algae are used as the feedstock for anaerobic digestion (AD) to produce biogas as a source of renewable energy. Although this has been the subject of extensive research over the past few decades, the main reason why AD has not been more widely commercialised is because it can have poor economic viability. In this paper, we used two similar bioreactors of capacity 1.5 L to generate biogas at different pressures. The methane concentration of the biogas increases to at least 70.0% for a headspace pressure greater than 4 bara compared to 57.5% or less when the pressure is less than 1.6 bara. The higher pressure operation therefore reduces the amount of upgrading required leading to a reduction in the cost of this step. Another interesting finding of this study is that the solubility of biogas in the digestate is estimated to be only 3.7% (best fit value) of its solubility in pure water, which is much lower than the values previously reported in the literature.
    • Computational and Experimental Study on the Resistance Welding Process of a Glass Fibre-Reinforced Epoxy-Based Composite with Thermoplastic Interlayer Adherent

      Liang, Yunhao; Shi, Yu; University of Chester; University of Leeds (Wiley, 2024-01-11)
      In this work, resistance welding of a glass fibre-reinforced epoxy composite (GFRC) was studied with numerical optimisation and experimental validation. A steel mesh and polymethyl methacrylate (PMMA) films were used as the heating element and adherent interlayers, respectively. A transient heat transfer module was implemented to conduct the parametric optimisation study, with variables of electricity power, clamping distance and weld time. The optimal welding condition was then confirmed as 20 W, 0.4 mm and 30 s, with the melting degree of 95.2 %. A thermal meter and a thermal camera validated the simulated temperature results. Welding quality was experimentally characterized by single lap shear tests and scanning electron microscopy (SEM). The highest lap shear strength of 3.8 ± 0.3 MPa was captured on the specimen welded with the optimised condition. This was 76 % that of the benchmark made with adhesive bonding method but it was over 200 times faster.
    • BDF2 ADI orthogonal spline collocation method for the fractional integro-differential equations of parabolic type in three dimensions

      Yan, Yubin; Qiao, Leijie; Wang, Ruru; Hendy, Ahmed S.; Changsha University of Science and Technology; University of Chester; Ural Federal University; Benha University; Shanxi University (Elsevier, 2023-12-13)
      In this paper, we are concerned with constructing a fast and an efficient alternating direction implicit (ADI) scheme for the fractional parabolic integro-differential equations (FPIDE) with a weakly singular kernel in three dimensions (3D). Our constructed scheme is based on a second-order backward differentiation formula (BDF2) for temporal discretization, orthogonal spline collocation (OSC) method for spatial discretization and a second-order fractional quadrature rule proposed by Lubich for the Riemann-Liouville fractional integral. The stability and convergence of the constructed numerical scheme are derived. Finally, some numerical examples are given to illustrate the accuracy and validity of the BDF2 ADI OSC method. Based on the obtained results, the numerical results are in line with the theoretical ones.
    • Spatial discretization for stochastic semilinear superdiffusion driven by fractionally integrated multiplicative space-time white noise

      Yan, Yubin; Hoult, James; University of Chester (MDPI, 2023-12-06)
      We investigate the spatial discretization of a stochastic semilinear superdiffusion problem driven by fractionally integrated multiplicative space-time white noise. The white noise is characterized by its properties of being white in both space and time and the time fractional derivative is considered in the Caputo sense with an order $\alpha \in (1, 2)$. A spatial discretization scheme is introduced by approximating the space-time white noise with the Euler method in the spatial direction and approximating the second-order space derivative with the central difference scheme. By using the Green functions, we obtain both exact and approximate solutions for the proposed problem. The regularities of both the exact and approximate solutions are studied and the optimal error estimates that depend on the smoothness of the initial values are established. This paper builds upon the research presented in Mathematics. 2021. 9, 1917, where we originally focused on error estimates in the context of subdiffusion with $\alpha \in (0, 1)$. We extend our investigation to the spatial approximation of stochastic superdiffusion with $\alpha \in (1, 2)$ and place particular emphasis on refining our understanding of the superdiffusion phenomenon by analyzing the error estimates associated with the time derivative at the initial point.
    • High-order schemes based on extrapolation for semilinear fractional differential equation

      Yan, Yubin; Green, Charles; Pani, Amiya; Yang, Yuhui; LvLiang University; University of Chester; BITS-Pilani, K.K. Birla Goa Campus (Springer, 2023-12-11)
      By rewriting the Riemann–Liouville fractional derivative as Hadamard finite-part integral and with the help of piecewise quadratic interpolation polynomial approximations, a numerical scheme is developed for approximating the Riemann–Liouville fractional derivative of order α∈(1, 2). The error has the asymptotic expansion (d3τ3-α+d4τ4-α+d5τ5-α+⋯)+(d2∗τ4+d3∗τ6+d4∗τ8+⋯) at any fixed time tN=T, N∈Z+, where di, i=3, 4, … and di∗, i=2, 3, … denote some suitable constants and τ=T/N denotes the step size. Based on this discretization, a new scheme for approximating the linear fractional differential equation of order α∈(1, 2) is derived and its error is shown to have a similar asymptotic expansion. As a consequence, a high-order scheme for approximating the linear fractional differential equation is obtained by extrapolation. Further, a high-order scheme for approximating a semilinear fractional differential equation is introduced and analyzed. Several numerical experiments are conducted to show that the numerical results are consistent with our theoretical findings.
    • QSAR-driven screening uncovers and designs novel pyrimidine-4,6-diamine derivatives as potent JAK3 inhibitors

      Faris, Abdelmoujoud; Ibrahim, Ibrahim M.; Alnajjar, Radwan; Hadni, Hanine; Bhat, Mashooq Ahmad; Yaseen, Muhammad; Chakraborty, Souvik; Alsakhen, Nada; Shamkh, Israa M.; Mabood, Fazal; et al. (Taylor & Francis, 2023-12-07)
      This study presents a robust and integrated methodology that harnesses a range of computational techniques to facilitate the design and prediction of new inhibitors targeting the JAK3/STAT pathway. This methodology encompasses several strategies, including QSAR analysis, pharmacophore modeling, ADMET prediction, covalent docking, molecular dynamics (MD) simulations, and the calculation of binding free energies (MM/GBSA). An efficacious QSAR model was meticulously crafted through the employment of multiple linear regression (MLR). The initial MLR model underwent further refinement employing an artificial neural network (ANN) methodology aimed at minimizing predictive errors. Notably, both MLR and ANN exhibited commendable performance, showcasing R2 values of 0.89 and 0.95, respectively. The model's precision was assessed via leave-one-out cross-validation (CV) yielding a Q2 value of 0.65, supplemented by rigorous Y-randomization. , The pharmacophore model effectively differentiated between active and inactive drugs, identifying potential JAK3 inhibitors, and demonstrated validity with an ROC value of 0.86. The newly discovered and designed inhibitors exhibited high inhibitory potency, ranging from 6 to 8, as accurately predicted by the QSAR models. Comparative analysis with FDA-approved Tofacitinib revealed that the new compounds exhibited promising ADMET properties and strong covalent docking (CovDock) interactions. The stability of the new discovered and designed inhibitors within the JAK3 binding site was confirmed through 500 ns MD simulations, while MM/GBSA calculations supported their binding affinity. Additionally, a retrosynthetic study was conducted to facilitate the synthesis of these potential JAK3/STAT inhibitors. The overall integrated approach demonstrates the feasibility of designing novel JAK3/STAT inhibitors with robust efficacy and excellent ADMET characteristics that surpass Tofacitinib by a significant margin.
    • The recent development of protection coordination schemes based on inverse of AC microgrid: A review

      Alasali, Feras; Mustafa, Haytham; Saidi, Abdelaziz Salah; El‐Naily, Naser; Abeid, Salima; Holderbaum, William; Omran, Emad; Saad, Saad M.; The Hashemite University; College of Electrical and Electronics Technology-Benghazi; King Khalid University; University of Chester; University of Salford; Suez Canal Authority (Wiley Open Access, 2023-12-06)
      Integration of distributed generation systems and diversity of microgrid operations led to a change in the structure of the power system. Due to this conversion, new challenges have arisen when employing traditional overcurrent protection schemes. As a consequence, non‐classical protection schemes have attracted significant attention in the last few years. Engineers and scholars have proposed different non‐standard methods to increase the power protection system and ensure the highly selectivity performance. Although the non‐standard characteristics and their requirements, in general, have been outlined and analyzed in the available literature, protection coordination based on voltage current–time inverse, as a branch of non‐standard optimization methods, has not yet been thoroughly discussed, compared, or debated in detail. To close this gap, this review introduces a broad overview of recent research and developments of the voltage current–time inverse based protection coordination. Focuses on assessing the potential advantages and disadvantages of related studies and provide a classification and analysis of these studies. The future trends and some recommendations have been included in this review for improving fault detection sensitivity and coordination reliability.