## Search

Now showing items 31-40 of 353

JavaScript is disabled for your browser. Some features of this site may not work without it.

All of ChesterRepCommunitiesTitleAuthorsPublication DateSubmit DateSubjectsPublisherJournalThis CommunityTitleAuthorsPublication DateSubmit DateSubjectsPublisherJournal

SubjectsEnergy harvesting (18)XPS (18)Ageing (10)Error estimates (9)fractional differential equations (8)numerical methods (7)stability (7)Virtual Reality (7)Atmospheric chemistry (6)Caputo derivative (6)View MoreJournalJournal of Computational and Applied Mathematics (11)Applied Numerical Mathematics (8)Journal of Physics: Conference Series (8)Applied Surface Science (5)Atmospheric Chemistry and Physics (5)View MoreAuthorsFord, Neville J. (49)Smith, Graham C. (39)Yan, Yubin (29)Jia, Yu (20)Mc Auley, Mark T. (20)Du, Sijun (17)Seshia, Ashwin A. (17)Banks, Craig E. (16)Yang, Bin (16)Baker, Christopher T. H. (15)View MoreTypes

Article (353)

Meetings and Proceedings (8)Preprint (2)Other (1)Working Paper (1)

Now showing items 31-40 of 353

- List view
- Grid view
- Sort Options:
- Relevance
- Title Asc
- Title Desc
- Issue Date Asc
- Issue Date Desc
- Results Per Page:
- 5
- 10
- 20
- 40
- 60
- 80
- 100

Using and Validating Airborne Ultrasound as a Tactile Interface within Medical Training Simulators

Hung, Gary M. Y.; John, Nigel W.; Hancock, Chris; Hoshi, Takayuki (Springer International Publishing, 2014-10)

We have developed a system called UltraSendo that creates a force field in space using an array of ultrasonic transducers cooperatively emitting ultrasonic waves to a focal point. UltraSendo is the first application of this technology in the context of medical training simulators. A face validation study was carried out at a Catheter Laboratory in a major regional hospital.

The effect of irradiation impinging on disparate anchoring configurations of polar-organic molecules adsorbed on bulk and thin-film metal surfaces

Papadopoulos, Theodoros A.; Metz, Sebastian; Tang, Shu-Jung (Elsevier, 2019-07-11)

The behavior of polar metal organic molecules, chloroaluminum phthalocyanine (ClAlPc), upon ultraviolet (UV) irradiation was investigated to evaluate the stability of the adsorption process on the Ag(111) thin film and bulk crystal. Angle-resolved photoelectron spectroscopy (ARPES) was mainly employed to measure the molecular energy states (MES) and vacuum level (VL) shift for 1-ML ClAlPc in the Cl-down configuration. A consistent trend was observed showing that ClAlPc in the Cl-down configuration is energetically more stable on the Ag thin-film surface than on the corresponding surface of the Ag bulk crystal. The intermediate adsorption state in tilted configuration during the irradiation impinging is identified by large positive VL shifts and broad spectra line shapes to infer a flipping mechanism from Cl-down to Cl-up configuration. Strain on the Ag thin films from the underlying mismatched Ge(111) substrate is considered to cause enlarged hollow sites on the Ag(111) thin-films, that anchor the Cl-down configuration more tightly on the thin-film surfaces, as confirmed by density functional theory (DFT) calculations.

A high-order scheme to approximate the Caputo fractional derivative and its application to solve the fractional diffusion wave equation

Du, Ruilian; Yan, Yubin; Liang, Zongqi (Elsevier, 2018-10-05)

A new high-order finite difference scheme to approximate the Caputo fractional derivative $\frac{1}{2} \big ( \, _{0}^{C}D^{\alpha}_{t}f(t_{k})+ \, _{0}^{C}D^{\alpha}_{t}f(t_{k-1}) \big ), k=1, 2, \dots, N, $ with the convergence order $O(\Delta t^{4-\alpha}), \, \alpha\in(1,2)$ is obtained when $f^{\prime \prime \prime} (t_{0})=0$, where $\Delta t$ denotes the time step size. Based on this scheme we introduce a finite difference method for solving fractional diffusion wave equation with the convergence order $O(\Delta t^{4-\alpha} + h^2)$, where $h$ denotes the space step size. Numerical examples are given to show that the numerical results are consistent with the theoretical results.

Virtual Reality Environment for the Cognitive Rehabilitation of Stroke Patients

John, Nigel W.; Day, Thomas W.; Pop, Serban R.; Chatterjee, Kausik; Cottrell, Katy; Buchanan, Alastair; Roberts, Jonathan (IEEE, 2019-09-04)

We present ongoing work to develop a virtual reality environment for the cognitive rehabilitation of patients as a part of their recovery from a stroke. A stroke causes damage to the brain and problem solving, memory and task sequencing are commonly affected. The brain can recover to some extent, however, and stroke patients have to relearn to carry out activities of daily learning. We have created an application called VIRTUE to enable such activities to be practiced using immersive virtual reality. Gamification techniques enhance the motivation of patients such as by making the level of difficulty of a task increase over time. The design and implementation of VIRTUE is presented together with the results of a small acceptability study.

Model-directed engineering of “difficult-to-express” monoclonal antibody production by Chinese hamster ovary cells

Pybus, Leon P.; Dean, Greg; West, Nathan R.; Smith, Andrew; Daramola, Olalekan; Field, Ray; Wilkinson, Stephen J.; James, David C. (Wiley, 2013-11-14)

Despite improvements in volumetric titer for monoclonal antibody (MAb) production processes using Chinese hamster ovary (CHO) cells, some “difficult-to-express” (DTE) MAbs inexplicably reach much lower process titers.

Perovskite Srx(Bi1-xNa0.97-xLi0.03)0.5TiO3 ceramics with polar nano regions for high power energy storage

Wu, Jiyue; Mahajan, Amit; Riekehr, Lars; Zhang, Hangfeng; Yang, Bin; Meng, Nan; Zhang, Zhen; Yan, Haixue (Elsevier, 2018-06-06)

Dielectric capacitors are very attractive for high power energy storage. However, the low energy density of these capacitors, which is mainly limited by the dielectric materials, is still the bottleneck for their applications. In this work, lead-free single-phase perovskite Srx(Bi1-xNa0.97-xLi0.03)0.5TiO3 (x=0.30 and 0.38) bulk ceramics, prepared using solid-state reaction method, were carefully studied for the dielectric capacitor application. Polar nano regions (PNRs) were created in this material using co-substitution at A-site to enable relaxor behaviour with low remnant polarization (Pr) and high maximum polarization (Pmax). Moreover, Pmax was further increased due to reversible electric field induced phase transitions. Comprehensive structural and electrical studies were performed to confirm the PNRs and the reversible phase transitions. And finally a high energy density (1.70 J/cm3) with an excellent efficiency (87.2%) was achieved using the contribution of PNRs and field-induced transitions in this material, making it among the best performing lead-free dielectric ceramic bulk material for high energy storage.

Next Generation Additive Manufacturing: Tailorable Graphene/Polylactic(acid) Filaments Allow the Fabrication of 3D Printable Porous Anodes for Utilisation within Lithium-Ion Batteries

Foster, Christopher W.; Zou, Guo-Qiang; Jiang, Yunling; Down, Michael P.; Liauw, Christopher M.; Ferrari, Alejandro Garcia-Miranda; Ji, Xiaobo; Smith, Graham C.; Kelly, Peter J.; Banks, Craig E. (Wiley, 2019-04-02)

Herein, we report the fabrication and application of Li-ion anodes for utilisation within Li-ion batteries, which are fabricated via additive manufacturing/3D printing (fused depo- sition modelling) using a bespoke graphene/polylactic acid (PLA) filament, where the graphene content can be readily tailored and controlled over the range 1–40 wt. %. We demon- strate that a graphene content of 20 wt. % exhibits sufficient conductivity and critically, effective 3D printability for the rapid manufacturing of 3D printed freestanding anodes (3DAs); simplifying the components of the Li-ion battery negating the need for a copper current collector. The 3DAs are physicochemcally and electrochemically characterised and possess sufficient conductivity for electrochemical studies. Critically, it is found that if the 3DAs are used in Li-ion batteries the specific capacity is very poor but can be significantly improved through the use of a chemical pre-treatment. Such treatment induces an increased porosity, which results in a 200-fold increase (after anode stabilisation) of the specific capacity (ca. 500 mAhg-1 at a current density of 40 mAg-1). This work significantly enhances the field of additive manufacturing/3D printed graphene based energy storage devices demonstrating that useful 3D printable batteries can be realised

Existence and regularity of solution for a Stochastic CahnHilliard / Allen-Cahn equation with unbounded noise diffusion

Antonopoulou, Dimitra; Karali, Georgia D.; Millet, Annie (Elsevier, 2015-10-24)

The Cahn-Hilliard/Allen-Cahn equation with noise is a simpliﬁed mean ﬁeld model of stochastic microscopic dynamics associated with adsorption and desorption-spin ﬂip mechanisms in the context of surface processes. For such an equation we consider a multiplicative space-time white noise with diﬀusion coeﬃcient of linear growth. Applying technics from semigroup theory, we prove local existence and uniqueness in dimensions d = 1,2,3. Moreover, when the diﬀusion coeﬃcient satisﬁes a sub-linear growth condition of order α bounded by 1 3, which is the inverse of the polynomial order of the nonlinearity used, we prove for d = 1 global existence of solution. Path regularity of stochastic solution, depending on that of the initial condition, is obtained a.s. up to the explosion time. The path regularity is identical to that proved for the stochastic Cahn-Hilliard equation in the case of bounded noise diﬀusion. Our results are also valid for the stochastic Cahn-Hilliard equation with unbounded noise diﬀusion, for which previous results were established only in the framework of a bounded diﬀusion coeﬃcient. As expected from the theory of parabolic operators in the sense of Petrovsk˘ıı, the bi-Laplacian operator seems to be dominant in the combined model.

Torsion Units for for a Ree group, Tits group and a Steinberg triality group

Gildea, Joe (Springer, 2015-12-28)

We investigate the Zassenhaus conjecture for the Steinberg triality group ${}^3D_4(2^3)$, Tits group ${}^2F_4(2)'$ and the Ree group ${}^2F_4(2)$. Consequently, we prove that the Prime Graph question is true for all three groups.

A posteriori error estimates for fully discrete fractional-step ϑ-approximations for parabolic equations

Karakatsani, Fotini (Oxford University Press, 2015-07-20)

We derive optimal order a posteriori error estimates for fully discrete approximations of initial and boundary value problems for linear parabolic equations. For the discretisation in time we apply the fractional-step #-scheme and for the discretisation in space the finite element method with finite element spaces that are allowed to change with time.

The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.