• Login / Register
    Search 
    •   Home
    • Faculty of Science and Engineering
    • Search
    •   Home
    • Faculty of Science and Engineering
    • Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of ChesterRepCommunitiesTitleAuthorsPublication DateSubmit DateSubjectsPublisherJournalThis CommunityTitleAuthorsPublication DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    Filter by Category

    Subjects
    Energy harvesting (1)
    MEMS (1)
    reliability (1)
    Soft damping (1)View MoreJournal
    Journal of Micromechanics and Microengineering (1)
    AuthorsArroyo, Emmanuelle (1)Chen, Shao-Tuan (1)
    Du, Sijun (1)
    Jia, Yu (1)Seshia, Ashwin A. (1)Types
    Article (1)

    About

    AboutUniversity of Chester

    Statistics

    Display statistics
     

    Search

    Show Advanced FiltersHide Advanced Filters

    Filters

    Now showing items 1-1 of 1

    • List view
    • Grid view
    • Sort Options:
    • Relevance
    • Title Asc
    • Title Desc
    • Issue Date Asc
    • Issue Date Desc
    • Results Per Page:
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100

    • 1CSV
    • 1RefMan
    • 1EndNote
    • 1BibTex
    • Selective Export
    • Select All
    • Help
    Thumbnail

    Shock Reliability Enhancement for MEMS Vibration Energy Harvesters with Nonlinear Air Damping as Soft Stopper

    Chen, Shao-Tuan; Du, Sijun; Arroyo, Emmanuelle; Jia, Yu; Seshia, Ashwin A. (IOP Publishing, 2017-09-20)
    This paper presents a novel application of utilising nonlinear air damping as soft mechanical stopper to increase the shock reliability for MEMS vibration energy harvesters. Theoretical framework for nonlinear air damping is constructed for MEMS vibration energy harvesters operating in different air pressure levels, and characterisation experiments are conducted to establish the relationship between air pressure and nonlinear air damping coefficient for rectangular cantilever MEMS micro cantilevers with different proof masses. Design guidelines on choosing the optimal air pressure level for different MEMS vibration energy harvesters based on the trade-off between harvestable energy and the device robustness is presented, and random excitation experiments are performed to verify the robustness of MEMS vibration energy harvesters with nonlinear air damping as soft stoppers to limit the maximum deflection distance and increase the shock reliability of the device.
    DSpace software (copyright © 2002 - 2019)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.