## Search

Now showing items 1-3 of 3

JavaScript is disabled for your browser. Some features of this site may not work without it.

All of ChesterRepCommunitiesTitleAuthorsPublication DateSubmit DateSubjectsPublisherJournalThis CommunityTitleAuthorsPublication DateSubmit DateSubjectsPublisherJournal

Subjects

Error estimates (3)

Laplace transform (3)

Caputo fractional derivative (2)Fractional diffusion problem (1)Nonsmooth data (1)Time fractional partial differential equation (1)Time fractional partial differential equations (1)View MoreJournalComputational Methods in Applied Mathematics (1)Journal of Computational Physics (1)SIAM Journal on Numerical Analysis (SINUM) (1)Authors
Yan, Yubin (3)

Ford, Neville J. (2)Khan, Monzorul (1)Xing, Yanyuan (1)Yang, Yan (1)TypesArticle (3)

Now showing items 1-3 of 3

- List view
- Grid view
- Sort Options:
- Relevance
- Title Asc
- Title Desc
- Issue Date Asc
- Issue Date Desc
- Results Per Page:
- 5
- 10
- 20
- 40
- 60
- 80
- 100

An analysis of the modified L1 scheme for time-fractional partial differential equations with nonsmooth data

Yan, Yubin; Khan, Monzorul; Ford, Neville J. (Society for Industrial and Applied Mathematics, 2018-01-11)

We introduce a modified L1 scheme for solving time fractional partial differential equations and obtain error estimates for smooth and nonsmooth initial data in both homogeneous and inhomogeneous cases. Jin \et (2016, An analysis of the L1 scheme for the subdiffusion equation with nonsmooth data, IMA J. of Numer. Anal., 36, 197-221) established an $O(k)$ convergence rate for the L1 scheme for smooth and nonsmooth initial data for the homogeneous problem, where $k$ denotes the time step size. We show that the modified L1 scheme has convergence rate $O(k^{2-\alpha}), 0< \alpha <1$ for smooth and nonsmooth initial data in both homogeneous and inhomogeneous cases. Numerical examples are given to show that the numerical results are consistent with the theoretical results.

A higher order numerical method for time fractional partial differential equations with nonsmooth data

Xing, Yanyuan; Yan, Yubin (Elsevier, 2018-01-02)

Gao et al. (2014) introduced a numerical scheme to approximate the Caputo fractional derivative with the convergence rate $O(k^{3-\alpha}), 0< \alpha <1$ by directly approximating the integer-order derivative with some finite difference quotients in the definition of the Caputo fractional derivative, see also Lv and Xu (2016), where $k$ is the time step size. Under the assumption that the solution of the time fractional partial differential equation is sufficiently smooth, Lv and Xu (2016) proved by using energy method that the corresponding numerical method for solving time fractional partial differential equation has the convergence rate $O(k^{3-\alpha}), 0< \alpha <1$ uniformly with respect to the time variable $t$. However, in general the solution of the time fractional partial differential equation has low regularity and in this case the numerical method fails to have the convergence rate $O(k^{3- \alpha}), 0 < \alpha <1$ uniformly with respect to the time variable $t$. In this paper, we first obtain a similar approximation scheme to the Riemann-Liouville fractional derivative with the convergence rate $O(k^{3- \alpha}), 0 < \alpha <1$ as in Gao \et \cite{gaosunzha} (2014) by approximating the Hadamard finite-part integral with the piecewise quadratic interpolation polynomials. Based on this scheme, we introduce a time discretization scheme to approximate the time fractional partial differential equation and show by using Laplace transform methods that the time discretization scheme has the convergence rate $O(k^{3- \alpha}), 0 < \alpha <1$ for any fixed $t_{n}>0$ for smooth and nonsmooth data in both homogeneous and inhomogeneous cases. Numerical examples are given to show that the theoretical results are consistent with the numerical results.

Some time stepping methods for fractional diffusion problems with nonsmooth data

Yang, Yan; Yan, Yubin; Ford, Neville J. (De Gruyter, 2017-09-02)

We consider error estimates for some time stepping methods for solving fractional diffusion problems with nonsmooth data in both homogeneous and inhomogeneous cases. McLean and Mustapha \cite{mclmus} (Time-stepping error bounds for fractional diffusion problems with non-smooth initial data, Journal of Computational Physics, 293(2015), 201-217) established an $O(k)$ convergence rate for the piecewise constant discontinuous Galerkin method with nonsmooth initial data for the homogeneous problem when the linear operator $A$ is assumed to be self-adjoint, positive semidefinite and densely defined in a suitable Hilbert space, where $k$ denotes the time step size. In this paper, we approximate the Riemann-Liouville fractional derivative by Diethelm's method (or $L1$ scheme) and obtain the same time discretisation scheme as in McLean and Mustapha \cite{mclmus}. We first prove that this scheme has also convergence rate $O(k)$ with nonsmooth initial data for the homogeneous problem when $A$ is a closed, densely defined linear operator satisfying some certain resolvent estimates. We then introduce a new time discretization scheme for the homogeneous problem based on the convolution quadrature and prove that the convergence rate of this new scheme is $O(k^{1+ \alpha}), 0<\alpha <1 $ with the nonsmooth initial data. Using this new time discretization scheme for the homogeneous problem, we define a time stepping method for the inhomogeneous problem and prove that the convergence rate of this method is $O(k^{1+ \alpha}), 0<\alpha <1 $ with the nonsmooth data. Numerical examples are given to show that the numerical results are consistent with the theoretical results.

The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.