• Login / Register
    Search 
    •   Home
    • Faculty of Science and Engineering
    • Search
    •   Home
    • Faculty of Science and Engineering
    • Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of ChesterRepCommunitiesTitleAuthorsPublication DateSubmit DateSubjectsPublisherJournalThis CommunityTitleAuthorsPublication DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    Filter by Category

    Subjects
    atmospheric chemistry (1)
    peroxy radicals (1)View MoreJournalAtmospheric Chemistry and Physics (1)Authors
    Axinte, Raoul (1)
    Bohn, Birger (1)
    Crowley, John N. (1)Fischer, Horst (1)Harder, Hartwig (1)Hens, Korbinian (1)
    Kubistin, Dagmar (1)
    Lelieveld, Jos (1)Martinez, Monica (1)Noelscher, Anke C. (1)View MoreTypes
    Article (1)

    About

    AboutUniversity of Chester

    Statistics

    Display statistics
     

    Search

    Show Advanced FiltersHide Advanced Filters

    Filters

    Now showing items 1-1 of 1

    • List view
    • Grid view
    • Sort Options:
    • Relevance
    • Title Asc
    • Title Desc
    • Issue Date Asc
    • Issue Date Desc
    • Results Per Page:
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100

    • 1CSV
    • 1RefMan
    • 1EndNote
    • 1BibTex
    • Selective Export
    • Select All
    • Help
    Thumbnail

    Insights into HOx and ROx chemistry in the boreal forest via measurement of peroxyacetic acid, peroxyacetic nitric anhydride (PAN) and hydrogen peroxide

    Crowley, John N.; Pouvesle, Nicolas; Phillips, Gavin J.; Axinte, Raoul; Fischer, Horst; Petaja, Tuukka; Noelscher, Anke C.; Williams, Jonathan; Hens, Korbinian; Harder, Hartwig; et al. (European Geosciences Union, 2018-09-21)
    Unlike many oxidised atmospheric trace gases, which have numerous production pathways, peroxyacetic acid (PAA) and PAN are formed almost exclusively in gas-phase reactions involving the hydroperoxy radical (HO2), the acetyl peroxy radical (CH3C(O)O2) and NO2 and are not believed to be directly emitted in significant amounts by vegetation. As the self-reaction of HO2 is the main photochemical route to hydrogen peroxide (H2O2), simultaneous observation of PAA, PAN and H2O2 can provide insight into the HO2 budget. We present an analysis of observations taken during a summertime campaign in a boreal forest that, in addition to natural conditions, was temporarily impacted by two biomass-burning plumes. The observations were analysed using an expression based on a steady-state assumption using relative PAA-to-PAN mixing ratios to derive HO2 concentrations. The steady-state approach generated HO2 concentrations that were generally in reasonable agreement with measurements but sometimes overestimated those observed by factors of 2 or more. We also used a chemically simple, constrained box model to analyse the formation and reaction of radicals that define the observed mixing ratios of PAA and H2O2. After nudging the simulation towards observations by adding extra, photochemical sources of HO2 and CH3C(O)O2, the box model replicated the observations of PAA, H2O2, ROOH and OH throughout the campaign, including the biomass-burning-influenced episodes during which significantly higher levels of many oxidized trace gases were observed. A dominant fraction of CH3O2 radical generation was found to arise via reactions of the CH3C(O)O2 radical. The model indicates that organic peroxy radicals were present at night in high concentrations that sometimes exceeded those predicted for daytime, and initially divergent measured and modelled HO2 concentrations and daily concentration profiles are reconciled when organic peroxy radicals are detected (as HO2) at an efficiency of 35%. Organic peroxy radicals are found to play an important role in the recycling of OH radicals subsequent to their loss via reactions with volatile organic compounds.
    DSpace software (copyright © 2002 - 2019)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.