## Search

Now showing items 1-3 of 3

JavaScript is disabled for your browser. Some features of this site may not work without it.

All of ChesterRepCommunitiesTitleAuthorsPublication DateSubmit DateSubjectsPublisherJournalThis CommunityTitleAuthorsPublication DateSubmit DateSubjectsPublisherJournal

Subjects

Caputo fractional derivative (3)

Error estimates (3)

Laplace transform (2)Fractional differential equation (1)Hadamard finite-part integral (1)Riemann-Liouville fractional derivative (1)Time fractional partial differential equation (1)Time fractional partial differential equations (1)View MoreJournalJournal of Computational and Applied Mathematics (1)Journal of Computational Physics (1)SIAM Journal on Numerical Analysis (SINUM) (1)AuthorsYan, Yubin (3)Asl, Mohammad S. (1)Ford, Neville J. (1)Javidi, Mohammad (1)Khan, Monzorul (1)Xing, Yanyuan (1)TypesArticle (3)

Now showing items 1-3 of 3

- List view
- Grid view
- Sort Options:
- Relevance
- Title Asc
- Title Desc
- Issue Date Asc
- Issue Date Desc
- Results Per Page:
- 5
- 10
- 20
- 40
- 60
- 80
- 100

An analysis of the modified L1 scheme for time-fractional partial differential equations with nonsmooth data

Yan, Yubin; Khan, Monzorul; Ford, Neville J. (Society for Industrial and Applied Mathematics, 2018-01-11)

We introduce a modified L1 scheme for solving time fractional partial differential equations and obtain error estimates for smooth and nonsmooth initial data in both homogeneous and inhomogeneous cases. Jin \et (2016, An analysis of the L1 scheme for the subdiffusion equation with nonsmooth data, IMA J. of Numer. Anal., 36, 197-221) established an $O(k)$ convergence rate for the L1 scheme for smooth and nonsmooth initial data for the homogeneous problem, where $k$ denotes the time step size. We show that the modified L1 scheme has convergence rate $O(k^{2-\alpha}), 0< \alpha <1$ for smooth and nonsmooth initial data in both homogeneous and inhomogeneous cases. Numerical examples are given to show that the numerical results are consistent with the theoretical results.

A novel high-order algorithm for the numerical estimation of fractional differential equations

Asl, Mohammad S.; Javidi, Mohammad; Yan, Yubin (Elsevier, 2018-01-09)

This paper uses polynomial interpolation to design a novel high-order algorithm for the numerical estimation of fractional differential equations. The Riemann-Liouville fractional derivative is expressed by using the Hadamard finite-part integral and the piecewise cubic interpolation polynomial is utilized to approximate the integral. The detailed error analysis is presented and it is established that the convergence order of the algorithm is O(h4−a). Asymptotic expansion of the error for the presented algorithm is also investigated. Some numerical examples are provided and compared with the exact solution to show that the numerical results are in well agreement with the theoretical ones and also to illustrate the accuracy and efficiency of the proposed algorithm.

A higher order numerical method for time fractional partial differential equations with nonsmooth data

Xing, Yanyuan; Yan, Yubin (Elsevier, 2018-01-02)

Gao et al. (2014) introduced a numerical scheme to approximate the Caputo fractional derivative with the convergence rate $O(k^{3-\alpha}), 0< \alpha <1$ by directly approximating the integer-order derivative with some finite difference quotients in the definition of the Caputo fractional derivative, see also Lv and Xu (2016), where $k$ is the time step size. Under the assumption that the solution of the time fractional partial differential equation is sufficiently smooth, Lv and Xu (2016) proved by using energy method that the corresponding numerical method for solving time fractional partial differential equation has the convergence rate $O(k^{3-\alpha}), 0< \alpha <1$ uniformly with respect to the time variable $t$. However, in general the solution of the time fractional partial differential equation has low regularity and in this case the numerical method fails to have the convergence rate $O(k^{3- \alpha}), 0 < \alpha <1$ uniformly with respect to the time variable $t$. In this paper, we first obtain a similar approximation scheme to the Riemann-Liouville fractional derivative with the convergence rate $O(k^{3- \alpha}), 0 < \alpha <1$ as in Gao \et \cite{gaosunzha} (2014) by approximating the Hadamard finite-part integral with the piecewise quadratic interpolation polynomials. Based on this scheme, we introduce a time discretization scheme to approximate the time fractional partial differential equation and show by using Laplace transform methods that the time discretization scheme has the convergence rate $O(k^{3- \alpha}), 0 < \alpha <1$ for any fixed $t_{n}>0$ for smooth and nonsmooth data in both homogeneous and inhomogeneous cases. Numerical examples are given to show that the theoretical results are consistent with the numerical results.

The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.